77,597 research outputs found
Collective motions of a quantum gas confined in a harmonic trap
Single-component quantum gas confined in a harmonic potential, but otherwise
isolated, is considered. From the invariance of the system of the gas under a
displacement-type transformation, it is shown that the center of mass
oscillates along a classical trajectory of a harmonic oscillator. It is also
shown that this harmonic motion of the center has, in fact, been implied by
Kohn's theorem. If there is no interaction between the atoms of the gas, the
system in a time-independent isotropic potential of frequency is
invariant under a squeeze-type unitary transformation, which gives collective
{\it radial} breathing motion of frequency to the gas. The amplitudes
of the oscillating and breathing motions from the {\it exact} invariances could
be arbitrarily large. For a Fermi system, appearance of mode of the
large breathing motion indicates that there is no interaction between the
atoms, except for a possible long-range interaction through the
inverse-square-type potential.Comment: Typos in the printed verions are correcte
Quark Orbital Angular Momentum in the Baryon
Analytical and numerical results, for the orbital and spin content carried by
different quark flavors in the baryons, are given in the chiral quark model
with symmetry breaking. The reduction of the quark spin, due to the spin
dilution in the chiral splitting processes, is transferred into the orbital
motion of quarks and antiquarks. The orbital angular momentum for each quark
flavor in the proton as a function of the partition factor and the
chiral splitting probability is shown. The cancellation between the spin
and orbital contributions in the spin sum rule and in the baryon magnetic
moments is discussed.Comment: 26 pages, 3 figures, revised version with minor eq. no and ref. no.
corrections. Discussion on the spin and a new ref. are adde
The geometrically-averaged density of states as a measure of localization
Motivated by current interest in disordered systems of interacting electrons,
the effectiveness of the geometrically averaged density of states,
, as an order parameter for the Anderson transition is
examined. In the context of finite-size systems we examine complications which
arise from finite energy resolution. Furthermore we demonstrate that even in
infinite systems a decline in with increasing disorder
strength is not uniquely associated with localization.Comment: 8 pages, 8 figures; revised text and figure
Monolithic arrays of surface emitting laser NOR logic devices
Monolithic, cascadable, laser-logic-device arrays have been realized and characterized. The monolithic surface-emitting laser logic (SELL) device consists of an AlGaAs superlattice lasing around 780 nm connected to a heterojunction phototransistor (HPT) in parallel and a resistor in series. Arrays up to 8×8 have been fabricated, and 2×2 arrays show uniform characteristics. The optical logic output is switched off with 40 μW incident optical input
Sea flavor content of octet baryons and intrinsic five-quark Fock states
Sea quark contents of the octet baryons are investigated by employing an
extended chiral constituent quark approach, which embodies higher Fock
five-quark components in the baryons wave-functions. The well-known flavor
asymmetry of the nucleon sea , is used as input to predict the
probabilities of , and in the nucleon, ,
and baryons, due to the intrinsic five-quark components in the
baryons wave functions.Comment: 22 page
Geometric Phase, Hannay's Angle, and an Exact Action Variable
Canonical structure of a generalized time-periodic harmonic oscillator is
studied by finding the exact action variable (invariant). Hannay's angle is
defined if closed curves of constant action variables return to the same curves
in phase space after a time evolution. The condition for the existence of
Hannay's angle turns out to be identical to that for the existence of a
complete set of (quasi)periodic wave functions. Hannay's angle is calculated,
and it is shown that Berry's relation of semiclassical origin on geometric
phase and Hannay's angle is exact for the cases considered.Comment: Submitted to Phys. Rev. Lett. (revised version
Monolithic arrays of surface emitting laser NOR logic devices
Monolithic, cascadable, laser-logic-device arrays have been realized and characterized. The monolithic surface-emitting laser logic (SELL) device consists of an AlGaAs superlattice lasing around 780 nm connected to a heterojunction phototransistor (HPT) in parallel and a resistor in series. Arrays up to 8×8 have been fabricated, and 2×2 arrays show uniform characteristics. The optical logic output is switched off with 40 μW incident optical input
Deep Discrete Hashing with Self-supervised Pairwise Labels
Hashing methods have been widely used for applications of large-scale image
retrieval and classification. Non-deep hashing methods using handcrafted
features have been significantly outperformed by deep hashing methods due to
their better feature representation and end-to-end learning framework. However,
the most striking successes in deep hashing have mostly involved discriminative
models, which require labels. In this paper, we propose a novel unsupervised
deep hashing method, named Deep Discrete Hashing (DDH), for large-scale image
retrieval and classification. In the proposed framework, we address two main
problems: 1) how to directly learn discrete binary codes? 2) how to equip the
binary representation with the ability of accurate image retrieval and
classification in an unsupervised way? We resolve these problems by introducing
an intermediate variable and a loss function steering the learning process,
which is based on the neighborhood structure in the original space.
Experimental results on standard datasets (CIFAR-10, NUS-WIDE, and Oxford-17)
demonstrate that our DDH significantly outperforms existing hashing methods by
large margin in terms of~mAP for image retrieval and object recognition. Code
is available at \url{https://github.com/htconquer/ddh}
- …