77,751 research outputs found
The effects of disorder and interactions on the Anderson transition in doped Graphene
We undertake an exact numerical study of the effects of disorder on the
Anderson localization of electronic states in graphene. Analyzing the scaling
behaviors of inverse participation ratio and geometrically averaged density of
states, we find that Anderson metal-insulator transition can be introduced by
the presence of quenched random disorder. In contrast with the conventional
picture of localization, four mobility edges can be observed for the honeycomb
lattice with specific disorder strength and impurity concentration. Considering
the screening effects of interactions on disorder potentials, the experimental
findings of the scale enlarges of puddles can be explained by reviewing the
effects of both interactions and disorder.Comment: 7 pages, 7 figure
The optical/UV excess of isolated neutron stars in the RCS model
The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like
objects, characterized by their very well Planck-like spectrum. In studying
their spectral energy distributions, the optical/UV excess is a long standing
problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for
all seven sources, which is understandable in the resonant cyclotron scattering
(RCS) model previously addressed. The RCS model calculations show that the RCS
process can account for the observed optical/UV excess for most sources . The
flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung
emission of the electron system in addition to the RCS process.Comment: 6 pages, 2 figures, 1 table, accepted for publication in Research in
Astronomy and Astrophysic
AXPs and SGRs in the outer gap model: confronting Fermi observations
Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are
magnetar candidates, i.e., neutron stars powered by strong magnetic field. If
they are indeed magnetars, they will emit high-energy gamma-rays which are
detectable by Fermi-LAT according to the outer gap model. However, no
significant detection is reported in recent Fermi-LAT observations of all known
AXPs and SGRs. Considering the discrepancy between theory and observations, we
calculate the theoretical spectra for all AXPs and SGRs with sufficient
observational parameters. Our results show that most AXPs and SGRs are
high-energy gamma-ray emitters if they are really magnetars. The four AXPs 1E
1547.0-5408, XTE J1810-197, 1E 1048.1-5937, and 4U 0142+61 should have been
detected by Fermi-LAT. Then there is conflict between out gap model in the case
of magnetars and Fermi observations. Possible explanations in the magnetar
model are discussed. On the other hand, if AXPs and SGRs are fallback disk
systems, i.e., accretion-powered for the persistent emissions, most of them are
not high-energy gamma-ray emitters. Future deep Fermi-LAT observations of AXPs
and SGRs will help us make clear whether they are magnetars or fallback disk
systems.Comment: 15 pages, 3 figures, 1 table, accepted for publication in The
Astrophysical Journa
- …