77,751 research outputs found

    The effects of disorder and interactions on the Anderson transition in doped Graphene

    Full text link
    We undertake an exact numerical study of the effects of disorder on the Anderson localization of electronic states in graphene. Analyzing the scaling behaviors of inverse participation ratio and geometrically averaged density of states, we find that Anderson metal-insulator transition can be introduced by the presence of quenched random disorder. In contrast with the conventional picture of localization, four mobility edges can be observed for the honeycomb lattice with specific disorder strength and impurity concentration. Considering the screening effects of interactions on disorder potentials, the experimental findings of the scale enlarges of puddles can be explained by reviewing the effects of both interactions and disorder.Comment: 7 pages, 7 figure

    The optical/UV excess of isolated neutron stars in the RCS model

    Full text link
    The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources . The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.Comment: 6 pages, 2 figures, 1 table, accepted for publication in Research in Astronomy and Astrophysic

    AXPs and SGRs in the outer gap model: confronting Fermi observations

    Full text link
    Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are magnetar candidates, i.e., neutron stars powered by strong magnetic field. If they are indeed magnetars, they will emit high-energy gamma-rays which are detectable by Fermi-LAT according to the outer gap model. However, no significant detection is reported in recent Fermi-LAT observations of all known AXPs and SGRs. Considering the discrepancy between theory and observations, we calculate the theoretical spectra for all AXPs and SGRs with sufficient observational parameters. Our results show that most AXPs and SGRs are high-energy gamma-ray emitters if they are really magnetars. The four AXPs 1E 1547.0-5408, XTE J1810-197, 1E 1048.1-5937, and 4U 0142+61 should have been detected by Fermi-LAT. Then there is conflict between out gap model in the case of magnetars and Fermi observations. Possible explanations in the magnetar model are discussed. On the other hand, if AXPs and SGRs are fallback disk systems, i.e., accretion-powered for the persistent emissions, most of them are not high-energy gamma-ray emitters. Future deep Fermi-LAT observations of AXPs and SGRs will help us make clear whether they are magnetars or fallback disk systems.Comment: 15 pages, 3 figures, 1 table, accepted for publication in The Astrophysical Journa
    • …
    corecore