57,474 research outputs found

    q-Deformation of W(2,2) Lie algebra associated with quantum groups

    Full text link
    An explicit realization of the W(2,2) Lie algebra is presented using the famous bosonic and fermionic oscillators in physics, which is then used to construct the q-deformation of this Lie algebra. Furthermore, the quantum group structures on the q-deformation of this Lie algebra are completely determined.Comment: 12 page

    Magneto-infrared spectroscopy of Landau levels and Zeeman splitting of three-dimensional massless Dirac Fermions in ZrTe5_5

    Full text link
    We present a magneto-infrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe5_5. We observe clear transitions between Landau levels and their further splitting under magnetic field. Both the sequence of transitions and their field dependence follow quantitatively the relation expected for 3D \emph{massless} Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe5_5 is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides a direct and bulk spectroscopic evidence that a relatively weak magnetic field can produce a sizeable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. Our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under current magnetic field configuration.Comment: Editors' Suggestio

    The effect of pre-processing and grain structure on the bio-corrosion and fatigue resistance of magnesium alloy AZ31

    Get PDF
    Magnesium alloys are broadly used for structural applications in the aerospace and automotive industries as well as in consumer electronics. While a high specific strength is the forte of magnesium alloys, one serious limitation for Mg alloys is their corrosion performance. Unlike aluminium, it does not form a stable passive film to provide long-term protection from further corrosion. The poor corrosion resistance of magnesium and magnesium alloys is regarded as a major drawback, and significant effort has been focused on improving this.[1-3] However, the high reactivity of magnesium alloys in corrosive media can be used to advantage in biomedical applications, particularly in temporary implants where the capacity of a material for bio-degradation is one of the most sought after properties. Indeed, permanent implant materials, such as stainless steel, titanium alloys or Nitinol (55Ni-45Ti), are the only choices currently available for hard tissue implantation. They can cause permanent physical irritation, long-term endothelial dysfunction and chronic inflammatory local reaction. Sometimes a second operation is needed for the implant to be removed. Given the ability of the human body to gradually recover and regenerate damaged tissue, the ideal solution would thus be a degradable implant, which would offer a physiologically less invasive repair and temporary support during tissue recovery. After fulfilling its function, this implant would be obliterated, being absorbed by the body. This philosophy of implant surgery would also be of particular interest for endovascular stent

    Hamiltonian type Lie bialgebras

    Full text link
    We first prove that, for any generalized Hamiltonian type Lie algebra LL, the first cohomology group H1(L,L⊗L)H^1(L,L \otimes L) is trivial. We then show that all Lie bialgebra structures on LL are triangular.Comment: LaTeX, 16 page

    Darboux Transformation of the Green Function for the Dirac Equation with the Generalized Potential

    Full text link
    We consider the Darboux transformation of the Green functions of the regular boundary problem of the one-dimensional stationary Dirac equation. We obtained the Green functions of the transformed Dirac equation with the initial regular boundary conditions. We also construct the formula for the unabridged trace of the difference of the transformed and the initial Green functions of the regular boundary problem of the one-dimensional stationary Dirac equation. We illustrate our findings by the consideration of the Darboux transformation for the Green function of the free particle Dirac equation on an interval.Comment: 14 pages,zip. file: Latex, 1 figure. Typos corrected, the figure replace

    Energy and momentum deposited into a QCD medium by a jet shower

    Get PDF
    Hard partons moving through a dense QCD medium lose energy by radiative emissions and elastic scatterings. Deposition of the radiative contribution into the medium requires rescattering of the radiated gluons. We compute the total energy loss and its deposition into the medium self-consistently within the same formalism, assuming perturbative interaction between probe and medium. The same transport coefficients that control energy loss of the hard parton determine how the energy is deposited into the medium; this allows a parameter free calculation of the latter once the former have been computed or extracted from experimental energy loss data. We compute them for a perturbative medium in hard thermal loop (HTL) approximation. Assuming that the deposited energy-momentum is equilibrated after a short relaxation time, we compute the medium's hydrodynamical response and obtain a conical pattern that is strongly enhanced by showering.Comment: 4 pages, 3 figures, revtex4, intro modified, typos correcte

    Tensor coupling effects on spin symmetry in anti-Lambda spectrum of hypernuclei

    Full text link
    The effects of ΛˉΛˉω\bar\Lambda\bar\Lambda\omega-tensor coupling on the spin symmetry of Λˉ\bar{\Lambda} spectra in Λˉ\bar{\Lambda}-nucleus systems have been studied with the relativistic mean-field theory. Taking 12^{12}C+Λˉ\bar{\Lambda} as an example, it is found that the tensor coupling enlarges the spin-orbit splittings of Λˉ\bar\Lambda by an order of magnitude although its effects on the wave functions of Λˉ\bar{\Lambda} are negligible. Similar conclusions has been observed in Λˉ\bar{\Lambda}-nucleus of different mass regions, including 16^{16}O+Λˉ\bar{\Lambda}, 40^{40}Ca+Λˉ\bar{\Lambda} and 208^{208}Pb+Λˉ\bar{\Lambda}. It indicates that the spin symmetry in anti-lambda-nucleus systems is still good irrespective of the tensor coupling.Comment: 12 pages, 3 figures
    • …
    corecore