57,474 research outputs found
q-Deformation of W(2,2) Lie algebra associated with quantum groups
An explicit realization of the W(2,2) Lie algebra is presented using the
famous bosonic and fermionic oscillators in physics, which is then used to
construct the q-deformation of this Lie algebra. Furthermore, the quantum group
structures on the q-deformation of this Lie algebra are completely determined.Comment: 12 page
Magneto-infrared spectroscopy of Landau levels and Zeeman splitting of three-dimensional massless Dirac Fermions in ZrTe
We present a magneto-infrared spectroscopy study on a newly identified
three-dimensional (3D) Dirac semimetal ZrTe. We observe clear transitions
between Landau levels and their further splitting under magnetic field. Both
the sequence of transitions and their field dependence follow quantitatively
the relation expected for 3D \emph{massless} Dirac fermions. The measurement
also reveals an exceptionally low magnetic field needed to drive the compound
into its quantum limit, demonstrating that ZrTe is an extremely clean
system and ideal platform for studying 3D Dirac fermions. The splitting of the
Landau levels provides a direct and bulk spectroscopic evidence that a
relatively weak magnetic field can produce a sizeable Zeeman effect on the 3D
Dirac fermions, which lifts the spin degeneracy of Landau levels. Our analysis
indicates that the compound evolves from a Dirac semimetal into a topological
line-node semimetal under current magnetic field configuration.Comment: Editors' Suggestio
The effect of pre-processing and grain structure on the bio-corrosion and fatigue resistance of magnesium alloy AZ31
Magnesium alloys are broadly used for structural applications in the aerospace and automotive industries as well as in consumer electronics. While a high specific strength is the forte of magnesium alloys, one serious limitation for Mg alloys is their corrosion performance. Unlike aluminium, it does not form a stable passive film to provide long-term protection from further corrosion. The poor corrosion resistance of magnesium and magnesium alloys is regarded as a major drawback, and significant effort has been focused on improving this.[1-3] However, the high reactivity of magnesium alloys in corrosive media can be used to advantage in biomedical applications, particularly in temporary implants where the capacity of a material for bio-degradation is one of the most sought after properties. Indeed, permanent implant materials, such as stainless steel, titanium alloys or Nitinol (55Ni-45Ti), are the only choices currently available for hard tissue implantation. They can cause permanent physical irritation, long-term endothelial dysfunction and chronic inflammatory local reaction. Sometimes a second operation is needed for the implant to be removed. Given the ability of the human body to gradually recover and regenerate damaged tissue, the ideal solution would thus be a degradable implant, which would offer a physiologically less invasive repair and temporary support during tissue recovery. After fulfilling its function, this implant would be obliterated, being absorbed by the body. This philosophy of implant surgery would also be of particular interest for endovascular stent
Hamiltonian type Lie bialgebras
We first prove that, for any generalized Hamiltonian type Lie algebra ,
the first cohomology group is trivial. We then show that
all Lie bialgebra structures on are triangular.Comment: LaTeX, 16 page
Darboux Transformation of the Green Function for the Dirac Equation with the Generalized Potential
We consider the Darboux transformation of the Green functions of the regular
boundary problem of the one-dimensional stationary Dirac equation. We obtained
the Green functions of the transformed Dirac equation with the initial regular
boundary conditions. We also construct the formula for the unabridged trace of
the difference of the transformed and the initial Green functions of the
regular boundary problem of the one-dimensional stationary Dirac equation. We
illustrate our findings by the consideration of the Darboux transformation for
the Green function of the free particle Dirac equation on an interval.Comment: 14 pages,zip. file: Latex, 1 figure. Typos corrected, the figure
replace
Energy and momentum deposited into a QCD medium by a jet shower
Hard partons moving through a dense QCD medium lose energy by radiative
emissions and elastic scatterings. Deposition of the radiative contribution
into the medium requires rescattering of the radiated gluons. We compute the
total energy loss and its deposition into the medium self-consistently within
the same formalism, assuming perturbative interaction between probe and medium.
The same transport coefficients that control energy loss of the hard parton
determine how the energy is deposited into the medium; this allows a parameter
free calculation of the latter once the former have been computed or extracted
from experimental energy loss data. We compute them for a perturbative medium
in hard thermal loop (HTL) approximation. Assuming that the deposited
energy-momentum is equilibrated after a short relaxation time, we compute the
medium's hydrodynamical response and obtain a conical pattern that is strongly
enhanced by showering.Comment: 4 pages, 3 figures, revtex4, intro modified, typos correcte
Tensor coupling effects on spin symmetry in anti-Lambda spectrum of hypernuclei
The effects of -tensor coupling on the spin
symmetry of spectra in -nucleus systems have
been studied with the relativistic mean-field theory. Taking
C+ as an example, it is found that the tensor coupling
enlarges the spin-orbit splittings of by an order of magnitude
although its effects on the wave functions of are negligible.
Similar conclusions has been observed in -nucleus of different
mass regions, including O+, Ca+ and
Pb+. It indicates that the spin symmetry in
anti-lambda-nucleus systems is still good irrespective of the tensor coupling.Comment: 12 pages, 3 figures
- …