43 research outputs found

    A semiempirical dynamic model of reversible open circuit voltage drop in a PEM fuel cell

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149313/1/er4127_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149313/2/er4127.pd

    ABatRe-Sim: A Comprehensive Framework for Automated Battery Recycling Simulation

    Full text link
    With the rapid surge in the number of on-road Electric Vehicles (EVs), the amount of spent lithium-ion (Li-ion) batteries is also expected to explosively grow. The spent battery packs contain valuable metal and materials that should be recovered, recycled, and reused. However, only less than 5% of the Li-ion batteries are currently recycled, due to a multitude of challenges in technology, logistics and regulation. Existing battery recycling is performed manually, which can pose a series of risks to the human operator as a consequence of remaining high voltage and chemical hazards. Therefore, there is a critical need to develop an automated battery recycling system. In this paper, we present ABatRe-sim, an open-source robotic battery recycling simulator, to facilitate the research and development in efficient and effective battery recycling au-omation. Specifically, we develop a detailed CAD model of the battery pack (with screws, wires, and battery modules), which is imported into Gazebo to enable robot-object interaction in the robot operating system (ROS) environment. It also allows the simulation of battery packs of various aging conditions. Furthermore, perception, planning, and control algorithms are developed to establish the benchmark to demonstrate the interface and realize the basic functionalities for further user customization. Discussions on the utilization and future extensions of the simulator are also presented

    Physics-Augmented Data-EnablEd Predictive Control for Eco-driving of Mixed Traffic Considering Diverse Human Behaviors

    Full text link
    Data-driven cooperative control of connected and automated vehicles (CAVs) has gained extensive research interest as it can utilize collected data to generate control actions without relying on parametric system models that are generally challenging to obtain. Existing methods mainly focused on improving traffic safety and stability, while less emphasis has been placed on energy efficiency in the presence of uncertainties and diversities of human-driven vehicles (HDVs). In this paper, we employ a data-enabled predictive control (DeePC) scheme to address the eco-driving of mixed traffic flows with diverse behaviors of human drivers. Specifically, by incorporating the physical relationship of the studied system and the Hankel matrix update from the generalized behavior representation to a particular one, we develop a new Physics-Augmented Data-EnablEd Predictive Control (PA-DeePC) approach to handle human driver diversities. In particular, a power consumption term is added to the DeePC cost function to reduce the holistic energy consumption of both CAVs and HDVs. Simulation results demonstrate the effectiveness of our approach in accurately capturing random human driver behaviors and addressing the complex dynamics of mixed traffic flows, while ensuring driving safety and traffic efficiency. Furthermore, the proposed optimization framework achieves substantial reductions in energy consumption, i.e., average reductions of 4.83% and 9.16% when compared to the benchmark algorithms

    Simultaneous Suspension Control and Energy Harvesting through Novel Design and Control of a New Nonlinear Energy Harvesting Shock Absorber

    Full text link
    Simultaneous vibration control and energy harvesting of vehicle suspensions have attracted significant research attention over the past decades. However, existing energy harvesting shock absorbers (EHSAs) are mainly designed based on the principle of linear resonance, thereby compromising suspension performance for high-efficiency energy harvesting and being only responsive to narrow bandwidth vibrations. In this paper, we propose a new EHSA design -- inerter pendulum vibration absorber (IPVA) -- that integrates an electromagnetic rotary EHSA with a nonlinear pendulum vibration absorber. We show that this design simultaneously improves ride comfort and energy harvesting efficiency by exploiting the nonlinear effects of pendulum inertia. To further improve the performance, we develop a novel stochastic linearization model predictive control (SL-MPC) approach in which we employ stochastic linearization to approximate the nonlinear dynamics of EHSA that has superior accuracy compared to standard linearization. In particular, we develop a new stochastic linearization method with guaranteed stabilizability, which is a prerequisite for control designs. This leads to an MPC problem that is much more computationally efficient than the nonlinear MPC counterpart with no major performance degradation. Extensive simulations are performed to show the superiority of the proposed new nonlinear EHSA and to demonstrate the efficacy of the proposed SL-MPC
    corecore