105 research outputs found

    Realtime Profiling of Fine-Grained Air Quality Index Distribution using UAV Sensing

    Full text link
    Given significant air pollution problems, air quality index (AQI) monitoring has recently received increasing attention. In this paper, we design a mobile AQI monitoring system boarded on unmanned-aerial-vehicles (UAVs), called ARMS, to efficiently build fine-grained AQI maps in realtime. Specifically, we first propose the Gaussian plume model on basis of the neural network (GPM-NN), to physically characterize the particle dispersion in the air. Based on GPM-NN, we propose a battery efficient and adaptive monitoring algorithm to monitor AQI at the selected locations and construct an accurate AQI map with the sensed data. The proposed adaptive monitoring algorithm is evaluated in two typical scenarios, a two-dimensional open space like a roadside park, and a three-dimensional space like a courtyard inside a building. Experimental results demonstrate that our system can provide higher prediction accuracy of AQI with GPM-NN than other existing models, while greatly reducing the power consumption with the adaptive monitoring algorithm

    Game Theoretic Approaches to Massive Data Processing in Wireless Networks

    Full text link
    Wireless communication networks are becoming highly virtualized with two-layer hierarchies, in which controllers at the upper layer with tasks to achieve can ask a large number of agents at the lower layer to help realize computation, storage, and transmission functions. Through offloading data processing to the agents, the controllers can accomplish otherwise prohibitive big data processing. Incentive mechanisms are needed for the agents to perform the controllers' tasks in order to satisfy the corresponding objectives of controllers and agents. In this article, a hierarchical game framework with fast convergence and scalability is proposed to meet the demand for real-time processing for such situations. Possible future research directions in this emerging area are also discussed

    Grid Jigsaw Representation with CLIP: A New Perspective on Image Clustering

    Full text link
    Unsupervised representation learning for image clustering is essential in computer vision. Although the advancement of visual models has improved image clustering with efficient visual representations, challenges still remain. Firstly, these features often lack the ability to represent the internal structure of images, hindering the accurate clustering of visually similar images. Secondly, the existing features tend to lack finer-grained semantic labels, limiting the ability to capture nuanced differences and similarities between images. In this paper, we first introduce Jigsaw based strategy method for image clustering called Grid Jigsaw Representation (GJR) with systematic exposition from pixel to feature in discrepancy against human and computer. We emphasize that this algorithm, which mimics human jigsaw puzzle, can effectively improve the model to distinguish the spatial feature between different samples and enhance the clustering ability. GJR modules are appended to a variety of deep convolutional networks and tested with significant improvements on a wide range of benchmark datasets including CIFAR-10, CIFAR-100/20, STL-10, ImageNet-10 and ImageNetDog-15. On the other hand, convergence efficiency is always an important challenge for unsupervised image clustering. Recently, pretrained representation learning has made great progress and released models can extract mature visual representations. It is obvious that use the pretrained model as feature extractor can speed up the convergence of clustering where our aim is to provide new perspective in image clustering with reasonable resource application and provide new baseline. Further, we innovate pretrain-based Grid Jigsaw Representation (pGJR) with improvement by GJR. The experiment results show the effectiveness on the clustering task with respect to the ACC, NMI and ARI three metrics and super fast convergence speed

    CDR: Conservative Doubly Robust Learning for Debiased Recommendation

    Full text link
    In recommendation systems (RS), user behavior data is observational rather than experimental, resulting in widespread bias in the data. Consequently, tackling bias has emerged as a major challenge in the field of recommendation systems. Recently, Doubly Robust Learning (DR) has gained significant attention due to its remarkable performance and robust properties. However, our experimental findings indicate that existing DR methods are severely impacted by the presence of so-called Poisonous Imputation, where the imputation significantly deviates from the truth and becomes counterproductive. To address this issue, this work proposes Conservative Doubly Robust strategy (CDR) which filters imputations by scrutinizing their mean and variance. Theoretical analyses show that CDR offers reduced variance and improved tail bounds.In addition, our experimental investigations illustrate that CDR significantly enhances performance and can indeed reduce the frequency of poisonous imputation

    Key Information Retrieval to Classify the Unstructured Data Content of Preferential Trade Agreements

    Full text link
    With the rapid proliferation of textual data, predicting long texts has emerged as a significant challenge in the domain of natural language processing. Traditional text prediction methods encounter substantial difficulties when grappling with long texts, primarily due to the presence of redundant and irrelevant information, which impedes the model's capacity to capture pivotal insights from the text. To address this issue, we introduce a novel approach to long-text classification and prediction. Initially, we employ embedding techniques to condense the long texts, aiming to diminish the redundancy therein. Subsequently,the Bidirectional Encoder Representations from Transformers (BERT) embedding method is utilized for text classification training. Experimental outcomes indicate that our method realizes considerable performance enhancements in classifying long texts of Preferential Trade Agreements. Furthermore, the condensation of text through embedding methods not only augments prediction accuracy but also substantially reduces computational complexity. Overall, this paper presents a strategy for long-text prediction, offering a valuable reference for researchers and engineers in the natural language processing sphere.Comment: AI4TS Workshop@AAAI 2024 accepted publicatio

    Structural Knowledge Informed Continual Multivariate Time Series Forecasting

    Full text link
    Recent studies in multivariate time series (MTS) forecasting reveal that explicitly modeling the hidden dependencies among different time series can yield promising forecasting performance and reliable explanations. However, modeling variable dependencies remains underexplored when MTS is continuously accumulated under different regimes (stages). Due to the potential distribution and dependency disparities, the underlying model may encounter the catastrophic forgetting problem, i.e., it is challenging to memorize and infer different types of variable dependencies across different regimes while maintaining forecasting performance. To address this issue, we propose a novel Structural Knowledge Informed Continual Learning (SKI-CL) framework to perform MTS forecasting within a continual learning paradigm, which leverages structural knowledge to steer the forecasting model toward identifying and adapting to different regimes, and selects representative MTS samples from each regime for memory replay. Specifically, we develop a forecasting model based on graph structure learning, where a consistency regularization scheme is imposed between the learned variable dependencies and the structural knowledge while optimizing the forecasting objective over the MTS data. As such, MTS representations learned in each regime are associated with distinct structural knowledge, which helps the model memorize a variety of conceivable scenarios and results in accurate forecasts in the continual learning context. Meanwhile, we develop a representation-matching memory replay scheme that maximizes the temporal coverage of MTS data to efficiently preserve the underlying temporal dynamics and dependency structures of each regime. Thorough empirical studies on synthetic and real-world benchmarks validate SKI-CL's efficacy and advantages over the state-of-the-art for continual MTS forecasting tasks
    corecore