1,011 research outputs found

    Trunk Velocity-Dependent Light Touch Reduces Postural Sway during Standing

    Get PDF
    Light Touch (LT) has been shown to reduce postural sway in a wide range of populations. While LT is believed to provide additional sensory information for balance modulation, the nature of this information and its specific effect on balance are yet unclear. In order to better understand LT and to potentially harness its advantages for a practical balance aid, we investigated the effect of LT as provided by a haptic robot. Postural sway during standing balance was reduced when the LT force (~ 1 N) applied to the high back area was dependent on the trunk velocity. Additional information on trunk position, provided through orthogonal vibrations, further reduced the sway position-metric of balance but did not further improve the velocity-metric of balance. Our results suggest that limited and noisy information on trunk velocity encoded in LT is sufficient to influence standing balance. © 2019 Saini et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Characterization of Silicone Rubber Based Soft Pneumatic Actuators

    Get PDF
    Conventional pneumatic actuators have been a popular choice due to their decent force/torque output. Nowadays, new generation of pneumatic actuator made out of highly compliant elastomers, which we call soft pneumatic actuators (SPA), are drawing increasing attention due to their ease of fabrication, high customizability and innately softness. However, there is no effective method presented to characterize and understand these actuators, such as to measure the force and torque output, range of motion and the speed of actuation. In this work, we present two types of SPAs: bending and rotary actuators. In addition, we have developed two measurement setups to characterize actuators of different geometries. The measured force/torque outputs of different actuators are presented and analyzed. Step responses to certain pressure input are presented and discussed. A simple model is presented to provide physical insight to the observed behavior of the soft actuators. This work provides the basis for designing customized SPAs with application-specific requirements

    Stair Negotiation Made Easier using Novel Interactive Energy-Recycling Assistive Stairs

    Get PDF
    Here we show that novel, energy-recycling stairs reduce the amount of work required for humans to both ascend and descend stairs. Our low-power, interactive, and modular steps can be placed on existing staircases, storing energy during stair descent and returning that energy to the user during stair ascent. Energy is recycled through event-triggered latching and unlatching of passive springs without the use of powered actuators. When ascending the energy-recycling stairs, naive users generated 17.4 ± 6.9% less positive work with their leading legs compared to conventional stairs, with the knee joint positive work reduced by 37.7 ± 10.5%. Users also generated 21.9 ± 17.8% less negative work with their trailing legs during stair descent, with ankle joint negative work reduced by 26.0 ± 15.9%. Our low-power energy-recycling stairs have the potential to assist people with mobility impairments during stair negotiation on existing staircases

    Guiding a Human Follower with Interaction Forces: Implications on Physical Human-Robot Interaction

    Get PDF
    This work challenges the common assumption in physical human-robot interaction (pHRI) that the movement intention of a human user can be simply modeled with dynamic equations relating forces to movements, regardless of the user. Studies in physical human-human interaction (pHHI) suggest that interaction forces carry sophisticated information that reveals motor skills and roles in the partnership and even promotes adaptation and motor learning. In this view, simple force-displacement equations often used in pHRI studies may not be sufficient. To test this, this work measured and analyzed the interaction forces (F) between two humans as the leader guided the blindfolded follower on a randomly chosen path. The actual trajectory of the follower was transformed to the velocity commands (V) that would allow a hypothetical robot follower to track the same trajectory. Then, possible analytical relationships between F and V were obtained using neural network training. Results suggest that while F helps predict V, the relationship is not straightforward, that seemingly irrelevant components of F may be important, that force-velocity relationships are unique to each human follower, and that human neural control of movement may affect the prediction of the movement intent. It is suggested that user-specific, stereotype-free controllers may more accurately decode human intent in pHRI

    Design, implementation and validation of an exoskeletal robot for locomotion studies in rodents

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 214-226).Growing interest in robotic treatment of patients with neurological injury motivates the development of therapeutic robots for basic research into recovery. Though humans are the ultimate beneficiaries, basic research frequently involves rodent models of neurological injury, which motivates robotic devices that can interact with rats or mice. Currently, available apparatus for locomotion studies of rodents is built upon treadmills, which simplify the design and implementation but also restrict the scope of possible experiments. This is largely due to the treadmill's single-dimensional movement and the lack of accommodation for natural or voluntary movement of the animal. In order to open up new possibilities for locomotion studies in rodents, this work introduces newly developed apparatus for locomotion research in rodents. The key concept is to allow maximal freedom of voluntary movement of the animal while providing forceful interaction when necessary. Advantages and challenges of the proposed machine over other existing designs are discussed. Design and implementation issues are presented and discussed, emphasizing their impact on free, voluntary, movement of the animal. A live-animal experiment was conducted to verify the design principles. Unconstrained natural movement of the animal was compared with movement with the overground robot attached. The compact, overground design and backdrivable implementation of this robot allow novel experiments that involve open-space, free (or interactive) locomotion of the animal.by Yun Seong Song.Ph.D

    On Stein's Identity and Near-Optimal Estimation in High-dimensional Index Models

    Full text link
    We consider estimating the parametric components of semi-parametric multiple index models in a high-dimensional and non-Gaussian setting. Such models form a rich class of non-linear models with applications to signal processing, machine learning and statistics. Our estimators leverage the score function based first and second-order Stein's identities and do not require the covariates to satisfy Gaussian or elliptical symmetry assumptions common in the literature. Moreover, to handle score functions and responses that are heavy-tailed, our estimators are constructed via carefully thresholding their empirical counterparts. We show that our estimator achieves near-optimal statistical rate of convergence in several settings. We supplement our theoretical results via simulation experiments that confirm the theory

    Soft Pneumatic Actuator Skin with Embedded Sensors

    Get PDF
    Soft Pneumatic Actuator skin (SPA-skin) is a novel concept of ultra-thin (< 1 mm) sensor embedded actuators with distributed actuation points that could cover soft bodies. This highly customizable and flexible SPA-skin is ideal for providing proprioceptive sensing by covering pre-existing structures and robots bodies. Having few limitation of the surface quality, dynamics, or shape, these mechanical attributes allow potential applications in autonomous flexible braille, active surface pattern reconfiguration, distributed actuation and sensing for tactile interface improvements. In this paper, the authors present a proof-of-concept SPA-skin. The mechanical parameters, design criteria, sensor selection, and actuator construction process are illustrated. Two control schemes, actuation mode and force sensing mode, are also demonstrated with the latest prototype

    PD-1 deficiency protects experimental colitis via alteration of gut microbiota

    Get PDF
    Programmed cell death-1 (PD-1) is a coinhibitory molecule and plays a pivotal role in immune regulation. Here, we demonstrate a role for PD-1 in pathogenesis of inflammatory bowel disease (IBD). Wild-type (WT) mice had severe wasting disease during experimentally induced colitis, while mice deficient for PD-1 (PD-1(-/-)) did not develop colon inflammation. Interestingly, PD-1(-/-) mice cohoused with WT mice became susceptible to colitis, suggesting that resistance of PD-1(-/-) mice to colitis is dependent on their gut microbiota. 16S rRNA gene-pyrosequencing analysis showed that PD-1(-/-) mice had altered composition of gut microbiota with significant reduction in Rikenellaceae family. These altered colon bacteria of PD-1(-/-) mice induced less amount of inflammatory mediators from colon epithelial cells, including interleukin (IL)-6, and inflammatory chemokines. Taken together, our study indicates that PD-1 expression is involved in the resistance to experimental colitis through altered bacterial communities of colon.112Ysciescopuskc

    Normal Gallbladder Visualization during Post-Ablative Iodine-131 Scan of Thyroid Cancer

    Get PDF
    Whole body iodine-131 scan is a well-established imaging method for the detection of metastatic or residual tumor sites in patients with well-differentiated thyroid cancer. Many false-positive iodine-131 scan findings mimicking metastatic thyroid cancer have long been reported. The authors describe a false positive uptake in normal gallbladder on post-ablative iodine-131 scan in a patient with papillary thyroid cancer. This finding should be considered to be another possible false-positive finding on iodine-131 whole body scan

    500 MS/s 4-Bit Flash ADC with Complementary Architecture

    Get PDF
    This paper proposes a 500 MS/s 4-bit flash analog-to-digital converter (ADC) featuring a differential input voltage range of 1.2 Vpp operating at a supply voltage of 1.2 V. Although the proposed circuit utilizes a conventional flash ADC structure, its track and hold circuit, driving buffer, and preamp circuits corresponding to the analog stages are designed using complementary architecture to attain a sufficient swing range even at a low supply voltage. Notably, the proposed structure satisfies the error requirements. The error source of the flash ADC, such as the comparator’s input referred offset, did not degrade its performance, while the use of a calibration circuit, characterized by power consumption and area burdens and increased complexity, could also be avoided. Therefore, the proposed flash ADC met the error requirements, such as the comparator’s input referred offset, without the need for calibration circuits. The chip, fabricated using the TSMC 65 nm process, covers an area of 1,160 × 950 μm2 and consumes 78 mW of power. Furthermore, its signal-to-noise and distortion ratio and spurious-free dynamic range were measured to be 23.36 dB and 30.26 dB, respectively, at a sampling frequency of 500 MHz
    corecore