27,511 research outputs found

    Counting hypergraph matchings up to uniqueness threshold

    Get PDF
    We study the problem of approximately counting matchings in hypergraphs of bounded maximum degree and maximum size of hyperedges. With an activity parameter λ\lambda, each matching MM is assigned a weight λ∣M∣\lambda^{|M|}. The counting problem is formulated as computing a partition function that gives the sum of the weights of all matchings in a hypergraph. This problem unifies two extensively studied statistical physics models in approximate counting: the hardcore model (graph independent sets) and the monomer-dimer model (graph matchings). For this model, the critical activity λc=ddk(d−1)d+1\lambda_c= \frac{d^d}{k (d-1)^{d+1}} is the threshold for the uniqueness of Gibbs measures on the infinite (d+1)(d+1)-uniform (k+1)(k+1)-regular hypertree. Consider hypergraphs of maximum degree at most k+1k+1 and maximum size of hyperedges at most d+1d+1. We show that when λ<λc\lambda < \lambda_c, there is an FPTAS for computing the partition function; and when λ=λc\lambda = \lambda_c, there is a PTAS for computing the log-partition function. These algorithms are based on the decay of correlation (strong spatial mixing) property of Gibbs distributions. When λ>2λc\lambda > 2\lambda_c, there is no PRAS for the partition function or the log-partition function unless NP==RP. Towards obtaining a sharp transition of computational complexity of approximate counting, we study the local convergence from a sequence of finite hypergraphs to the infinite lattice with specified symmetry. We show a surprising connection between the local convergence and the reversibility of a natural random walk. This leads us to a barrier for the hardness result: The non-uniqueness of infinite Gibbs measure is not realizable by any finite gadgets

    Joint Domain Based Massive Access for Small Packets Traffic of Uplink Wireless Channel

    Full text link
    The fifth generation (5G) communication scenarios such as the cellular network and the emerging machine type communications will produce massive small packets. To support massive connectivity and avoid signaling overhead caused by the transmission of those small packets, this paper proposes a novel method to improve the transmission efficiency for massive connections of wireless uplink channel. The proposed method combines compressive sensing (CS) with power domain NOMA jointly, especially neither the scheduling nor the centralized power allocation is necessary in the method. Both the analysis and simulation show that the method can support up to two or three times overloading.Comment: 6 pages, 5 figures.submitted to globecom 201
    • …
    corecore