112 research outputs found

    Fine-grained Text and Image Guided Point Cloud Completion with CLIP Model

    Full text link
    This paper focuses on the recently popular task of point cloud completion guided by multimodal information. Although existing methods have achieved excellent performance by fusing auxiliary images, there are still some deficiencies, including the poor generalization ability of the model and insufficient fine-grained semantic information for extracted features. In this work, we propose a novel multimodal fusion network for point cloud completion, which can simultaneously fuse visual and textual information to predict the semantic and geometric characteristics of incomplete shapes effectively. Specifically, to overcome the lack of prior information caused by the small-scale dataset, we employ a pre-trained vision-language model that is trained with a large amount of image-text pairs. Therefore, the textual and visual encoders of this large-scale model have stronger generalization ability. Then, we propose a multi-stage feature fusion strategy to fuse the textual and visual features into the backbone network progressively. Meanwhile, to further explore the effectiveness of fine-grained text descriptions for point cloud completion, we also build a text corpus with fine-grained descriptions, which can provide richer geometric details for 3D shapes. The rich text descriptions can be used for training and evaluating our network. Extensive quantitative and qualitative experiments demonstrate the superior performance of our method compared to state-of-the-art point cloud completion networks

    Seroprevalence of Bartonella in Eastern China and analysis of risk factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Bartonella </it>infections are emerging in the Zhejiang Province of China. However, there has been no effort to date to explore the epidemiology of these infections in this region, nor to identify risk factors associated with exposure to <it>Bartonella</it>. The aim of this study was to investigate the seroprevalence of <it>Bartonella </it>in both patients bitten by dogs and blood donors (for control) in Eastern China, and to identify risk factors associated with exposure to <it>Bartonella</it>. As no previous data for this region have been published, this study will provide baseline data useful for <it>Bartonella </it>infection surveillance, control, and prevention.</p> <p>Methods</p> <p>Blood samples were collected from industrial rabies clinic attendees and blood donors living in eight areas of the Zhejiang Province of China, between December 2005 and November 2006. An indirect immunofluorescent antibody test was used to determine the presence of <it>Bartonella </it>in these samples. Risk factors associated with <it>Bartonella </it>exposure were explored using Chi-square tests and logistic regression analysis of epidemiological data relating to the study's participants.</p> <p>Results</p> <p><it>Bartonella </it>antibodies were detected in 19.60% (109/556) of blood samples. Seroprevalence varied among the eight areas surveys, ranging from over 32% in Hangzhou to only 2% in Jiangshan (X<sup>2 </sup>= 28.22, P < 0.001). We detected a significantly higher prevalence of <it>Bartonella </it>antibodies in people who had been bitten by dogs than in blood donors (X<sup>2 </sup>= 13.86, P < 0.001). Seroprevalence of <it>Bartonella </it>was similar among males (18.61%, n = 317) and females (20.92%, n = 239).</p> <p>Conclusions</p> <p><it>Bartonella </it>antibodies were encountered in people living across Zhejiang Province and the seropositivity rate among those exposed to dog bites was significantly higher than that among blood donors, indicating that dog bites may be a risk factor for <it>Bartonella </it>infection.</p

    Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease

    Get PDF
    Helminth infection may modulate the expression of Toll like receptors (TLR) in dendritic cells (DCs) and modify the responsiveness of DCs to TLR ligands. This may regulate aberrant intestinal inflammation in humans with helminthes and may thus help alleviate inflammation associated with human inflammatory bowel disease (IBD). Epidemiological and experimental data provide further evidence that reducing helminth infections increases the incidence rate of such autoimmune diseases. Fine control of inflammation in the TLR pathway is highly desirable for effective host defense. Thus, the use of antagonists of TLR-signaling and agonists of their negative regulators from helminths or helminth products should be considered for the treatment of IBD

    Systematic Analysis of Survival-Associated Alternative Splicing Signatures in Thyroid Carcinoma

    Get PDF
    Alternative splicing (AS) is a key mechanism involved in regulating gene expression and is closely related to tumorigenesis. The incidence of thyroid cancer (THCA) has increased during the past decade, and the role of AS in THCA is still unclear. Here, we used TCGA and to generate AS maps in patients with THCA. Univariate analysis revealed 825 AS events related to the survival of THCA. Five prognostic models of AA, AD, AT, ES, and ME events were obtained through lasso and multivariate analyses, and the final prediction model was established by integrating all the AS events in the five prediction models. Kaplan–Meier survival analysis revealed that the overall survival rate of patients in the high-risk group was significantly shorter than that of patients in the low-risk group. The ROC results revealed that the prognostic capabilities of each model at 3, 5, and 8 years were all greater than 0.7, and the final prognostic capabilities of the models were all greater than 0.9. By reviewing other databases and utilizing qPCR, we verified the established THCA gene model. In addition, gene set enrichment analysis showed that abnormal AS events might play key roles in tumor development and progression of THCA by participating in changes in molecular structure, homeostasis of the cell environment and in cell energy. Finally, a splicing correlation network was established to reveal the potential regulatory patterns between the predicted splicing factors and AS event candidates. In summary, AS should be considered an important prognostic indicator of THCA. Our results will help to elucidate the underlying mechanism of AS in the process of THCA tumorigenesis and broaden the prognostic and clinical application of molecular targeted therapy for THCA

    Loss of the Urothelial Differentiation Marker FOXA1 Is Associated with High Grade, Late Stage Bladder Cancer and Increased Tumor Proliferation

    Get PDF
    Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC

    State-of-Art Review of NO Reduction Technologies by CO, CH4 and H2

    No full text
    Removal of nitrogen oxides during coal combustion is a subject of great concerns. The present study reviews the state-of-art catalysts for NO reduction by CO, CH4, and H2. In terms of NO reduction by CO and CH4, it focuses on the preparation methodologies and catalytic properties of noble metal catalysts and non-noble metal catalysts. In the technology of NO removal by H2, the NO removal performance of the noble metal catalyst is mainly discussed from the traditional carrier and the new carrier, such as Al2O3, ZSM-5, OMS-2, MOFs, perovskite oxide, etc. By adopting new preparation methodologies and introducing the secondary metal component, the catalysts supported by a traditional carrier could achieve a much higher activity. New carrier for catalyst design seems a promising aspect for improving the catalyst performance, i.e., catalytic activity and stability, in future. Moreover, mechanisms of catalytic NO reduction by these three agents are discussed in-depth. Through the critical review, it is found that the adsorption of NOx and the decomposition of NO are key steps in NO removal by CO, and the activation of the C-H bond in CH4 and H-H bonds in H2 serves as a rate determining step of the reaction of NO removal by CH4 and H2, respectively

    Position Tracking Control for Permanent Magnet Linear Motor via Continuous-Time Fast Terminal Sliding Mode Control

    No full text
    For the position tracking control problem of permanent magnet linear motor, an improved fast continuous-time nonsingular terminal sliding mode control algorithm based on terminal sliding mode control method is proposed. Specifically, first, for the second-order model of position error dynamic system, a new continuous-time fast terminal sliding surface is introduced and an improved continuous-time fast terminal sliding mode control law is proposed. Then rigorous theoretical analysis is provided to demonstrate the finite-time stability of the closed-loop system by using the Lyapunov function. Finally, numerical simulations are given to verify the effectiveness and advantages of the proposed fast nonsingular terminal sliding mode control method
    corecore