34 research outputs found

    Emails Between PBOC and Federal Reserve-2015

    Get PDF
    A series of emails between Steven Kamin Director, Division of International Finance of the Federal Reserve Board and (1) Mr. Ma Jun Chief Economist, Research Bureau, PBOC and separately with (2) Xiangyan Song of the Peoples Bank of China Representative Office for the Americas (NYC). The emails begin on September 28, 2014, and conclude (due to time zones) with one dated July 27, 2015, from Mr. Song to Mr. Kamin. On July 2015, Mr. Song asks for assistance due to the 8.5% drop in China\u27s stock market. Mr. Kamin provided information in an email dated the next day

    Rapid and simultaneous determination of two immunosup-pressants in whole blood by high performance liquid chroma-tography

    Get PDF
    Cyclosporine A and sirolimus are immunosuppressants that are widely used in many organ transplantation procedures. They exhibit some complementary mechanisms of action and interact synergistically when used together. However, they are criticalāƒdose drugs and have a narrow therapeutic index. They provide the desired therapeutic effect with acceptable tolerability only within a specific range of blood concentrations. Therefore, the rapid and simultaneous detection of the concentrations of cyclosporine A and sirolimus in whole blood could provide valuable information on planning medicine administration after organ transplantations. In this study, firstly, the chromatographic behaviors of cyclosporine A and sirolimus on a biological liquid chromatography (BioLC)column and traditional liquid chromatography (TraLC)columns were investigated systematically under the same chromatographic conditions. The results suggested that the peak height and peak width of cyclosporine A and sirolimus on the BioLC column, ZORBAX 300SB C8 (250 mm X 4.6 mm, 5.0 Ī¼ m), were the highest and narrowest, respectively. The number of theoretical plates of cyclosporine A and sirolimus on the ZORBAX 300SB C8 column increased significantly when the volume ratio of acetonitrile in the mobile phases was greater than 70%. Their retention time on the BioLC and TraLC columns was negligibly affected by the use of formic acid and trifluoroacetic acid as the mobile phases. In the range of the experimental column temperature, the number of theoretical plates of cyclosporine A and sirolimus on the ZORBAX 300SB C8 column was significantly higher than that on the two TraLC columns. Furthermore, the relationship between the retention factor and column temperature of cyclosporine A on the ZORBAX 300SB C8 column was different from that on the two TraLC columns. A sample of whole blood with a volume of 50 Ī¼L was prepared by protein precipitation with 1 mol/L sodium hydroxide and then extracted into 500 Ī¼L of etherāƒmethanol (95:5, v/v). After centrifugation at 14.000 r/min for 10 min, the organic layer was removed and evaporated under a stream of nitrogen at 50 ā„ƒ. The residue was then reconstituted in 200 Ī¼L of methanol for use. Cyclosporin A and sirolimus were separated through isocratic elution on the ZORBAX 300SB C8 column

    Compound K Inhibits Autophagy-Mediated Apoptosis Through Activation of the PI3K-Akt Signaling Pathway Thus Protecting Against Ischemia/Reperfusion Injury

    Get PDF
    Background/Aims: A series of reports revealed that autophagy and apoptosis exerted detrimental effects on the pathology of cardiac ischemia/reperfusion (I/R) injury. Ginsenoside compound K (CK), a major intestinal metabolite underlying the pharmacological actions of orally administered ginseng, has a protective effect against myocardial I/R injury. However, the molecular mechanisms by which CK protects against I/R injury remain unclear. In this study, we hypothesized that the cardioprotective effects of CK against I/R injury are mediated by inhibiting autophagy/apoptosis-related signaling pathways in H9c2 cardiomyocyte cells. Methods: H9c2 cells were incubated with CK and exposed to I/R. Cell viability and damage was analyzed by MTT and lactate dehydrogenase assays. Reactive oxygen species (ROS) generation, mitochondrial damage, and cell apoptosis were analyzed by flow cytometry and TUNEL staining. The expression of autophagy, apoptosis, and related signaling proteins was analyzed by Western blotting and immunofluorescence staining. Results: CK pretreatment promoted cell viability and attenuated ROS accumulation and intracellular mitochondrial damage induced by I/R injury Moreover, CK reduced autophagy by regulating the formation of phagocytic precursors to autophagosomes and also inhibited apoptosis through a mitochondrial-mediated pathway. Additionally the cardioprotective effect of CK against I/R injury was mainly through the activation of the PI3K-Akt signaling pathway. Conclusions: CK pretreatment inhibits autophagy-mediated apoptosis induced by I/R injury through the activation of the PI3K-Akt signaling pathway, which reveals that CK may be one of the key bioactive ingredients of ginseng for the treatment of myocardial I/R injury

    Experimental Study on Seismic Performance of Precast Columns Repaired with CFRP Fabrics

    No full text
    Funding Information: This research was funded by the Shaanxi Province Science and Technology Department, grant number 2022JZ-32, and Changā€™an University, grant number 300102212212. This paper was written during the academic visit of the second author to Aalto University in Finland, financially supported by the China Scholarship Council. Publisher Copyright: Ā© 2022 by the authors.Earthquakes worldwide highlight the seismic vulnerability of reinforced concrete (RC) bridge columns. RC bridges are likely to collapse or lose service function due to damage to the bridge columns from strong earthquakes. Rapid repair of RC bridge columns is of great significance for maintaining traffic lines for emergency rescue work after earthquakes. In this study, an improved rapid repair method was developed to restore the bearing capacity of a damaged precast column after earthquake damage. A cyclic loading test was performed to simulate the seismic loading. The original column and the repaired column were both tested. The test results showed that the bearing capacity of the repaired columns was increased by 8%, and the energy dissipation capacity was 53% higher than that of the original column. The ductility decreased because the test for the repaired specimen ended in advance. The initial stiffness of the repaired columns was reduced, but the stiffness was significantly developed in the later loading stage. The rapid repair method proposed in this study exhibited an excellent effect on restoring the seismic resistance of the damaged columns.Peer reviewe

    Preparation, Characterization, and Inhibition of Hyaluronic Acid Oligosaccharides in Triple-Negative Breast Cancer

    No full text
    Hyaluronic acid (hyaluronan, HA) is a critical component of the extracellular matrix and plays an important biological function of interacting with different molecules and receptors. In this study, both odd- and even-numbered HA oligosaccharides (HAOs) with specific degrees of polymerization (DP) were prepared by different hydrochloric acid hydrolyses, and their structures were characterized by means of HPLC, ESI-MS, and NMR. The data show that the odd-numbered HAOs (DP3-11) have a glucuronic acid reducing end, while the even-numbered HAOs (DP2-10) have an N-acetylglucosamine reducing end. Biological evaluations indicated that all HAOs significantly inhibited the growth and migration of triple-negative breast cancer (TNBC) MDA-MB-231 cells. Among these oligosaccharides, the HA tetrasaccharide (DP4) was confirmed to be the minimum fragment necessary to inhibit MDA-MB-231 cells. Our data suggest that HAOs have potential value in the treatment of TNBC

    Design and development of high precision four roll CNC roll bending machine and automatic control model

    No full text
    Abstract In recent years, advancements in industries such as aerospace, military weaponry, automobiles, locomotives, and shipbuilding have led to a surge in the demand for bent and rolled components, along with increasingly stringent requirements for rolling precision. However, the traditional hydraulic cylinder feeding solution has hindered further enhancements in the accuracy of rolled profile contours. Additionally, owing to variations in profile specifications, material properties, and an assortment of random factors during the forming process, the applicability of existing forming formulas remains limited, rendering them suitable only for profile processing under specific circumstances. To address these challenges, servo electric cylinders have been introduced as a replacement for traditional hydraulic cylinders, and the mechanical structure of a four-roll bending machine has been re-engineered. This innovation has demonstrated the feasibility of employing servo electric cylinders in four-roll CNC bending machines for profile bending, resulting in higher control precision and faster response times, ultimately providing a comprehensive design solution for four-roll CNC bending machines. In response to the limited universality of existing forming formulas, the actual R (profile forming curvature) and d (servo electric cylinder feed) values from the four-roll CNC bending machine have been utilized, and curve fitting methods have been implemented as the foundation for the automatic control model. This approach offers a high degree of universality, making it suitable for a wide range of applications. Moreover, as the number of trials increased, forming precision progressively improved
    corecore