4,667 research outputs found

    Distributed Power-Line Outage Detection Based on Wide Area Measurement System

    Get PDF
    In modern power grids, the fast and reliable detection of power-line outages is an important functionality, which prevents cascading failures and facilitates an accurate state estimation to monitor the real-time conditions of the grids. However, most of the existing approaches for outage detection suffer from two drawbacks, namely: (i) high computational complexity; and (ii) relying on a centralized means of implementation. The high computational complexity limits the practical usage of outage detection only for the case of single-line or double-line outages. Meanwhile, the centralized means of implementation raises security and privacy issues. Considering these drawbacks, the present paper proposes a distributed framework, which carries out in-network information processing and only shares estimates on boundaries with the neighboring control areas. This novel framework relies on a convex-relaxed formulation of the line outage detection problem and leverages the alternating direction method of multipliers (ADMM) for its distributed solution. The proposed framework invokes a low computational complexity, requiring only linear and simple matrix-vector operations. We also extend this framework to incorporate the sparse property of the measurement matrix and employ the LSQRalgorithm to enable a warm start, which further accelerates the algorithm. Analysis and simulation tests validate the correctness and effectiveness of the proposed approaches

    Excitonic Instabilities and Insulating States in Bilayer Graphene

    Full text link
    The competing ground states of bilayer graphene are studied by applying renormalization group techniques to a bilayer honeycomb lattice with nearest neighbor hopping. In the absence of interactions, the Fermi surface of this model at half-filling consists of two nodal points with momenta K\mathbf{K}, K′\mathbf{K}', where the conduction band and valence band touch each other, yielding a semi-metal. Since near these two points the energy dispersion is quadratic with perfect particle-hole symmetry, excitonic instabilities are inevitable if inter-band interactions are present. Using a perturbative renormalization group analysis up to the one-loop level, we find different competing ordered ground states, including ferromagnetism, superconductivity, spin and charge density wave states with ordering vector Q=K−K′\mathbf{Q}=\mathbf{K}-\mathbf{K}', and excitonic insulator states. In addition, two states with valley symmetry breaking are found in the excitonic insulating and ferromagnetic phases. This analysis strongly suggests that the ground state of bilayer graphene should be gapped, and with the exception of superconductivity, all other possible ground states are insulating.Comment: 17 pages, 6 figures, 2 Tables, Added reference

    Synthesis, characterization and ethylene polymerization behaviour of binuclear nickel halides bearing 4,5,9,10-tetra(arylimino)pyrenylidenes

    Get PDF
    Pyrene-4,5,9,10-tetraone was prepared via the oxidation of pyrene, and reacted with various anilines to afford a series of 4,5,9,10-tetra(arylimino)pyrenylidene derivatives (L1–L4). The tetraimino-pyrene compounds L1 and L2 were reacted with two equivalents of (DME)NiBr₂ in CH₂Cl₂ to afford the corresponding dinickel bromide complexes (Ni1 and Ni2). The organic compounds were fully characterized, whilst the bi-metallic complexes were characterized by FT-IR spectra and elemental analysis. The molecular structures of representative organic and nickel compounds were confirmed by single-crystal X-ray diffraction studies. These nickel complexes exhibited high activities towards ethylene polymerization in the presence of either MAO or Me₂AlCl, maintaining a high activity over a prolonged period (longer than previously reported dinickel complex pre-catalysts). The polyethylene obtained was characterized by GPC, DSC and FT-IR spectroscopy and was found to possess branched features

    Robust Time Series Dissimilarity Measure for Outlier Detection and Periodicity Detection

    Full text link
    Dynamic time warping (DTW) is an effective dissimilarity measure in many time series applications. Despite its popularity, it is prone to noises and outliers, which leads to singularity problem and bias in the measurement. The time complexity of DTW is quadratic to the length of time series, making it inapplicable in real-time applications. In this paper, we propose a novel time series dissimilarity measure named RobustDTW to reduce the effects of noises and outliers. Specifically, the RobustDTW estimates the trend and optimizes the time warp in an alternating manner by utilizing our designed temporal graph trend filtering. To improve efficiency, we propose a multi-level framework that estimates the trend and the warp function at a lower resolution, and then repeatedly refines them at a higher resolution. Based on the proposed RobustDTW, we further extend it to periodicity detection and outlier time series detection. Experiments on real-world datasets demonstrate the superior performance of RobustDTW compared to DTW variants in both outlier time series detection and periodicity detection

    Fluctuation-Driven Vortex Fractionalization in Topologically Ordered Superfluids of Cold Atoms

    Full text link
    We have studied spin structures of fluctuation-driven fractionalized vortices and topological spin order in 2D nematic superfluids of cold sodium atoms. Our Monte Carlo simulations suggest a softened pi-spin disclination structure in a half-quantum vortex when spin correlations are short ranged; in addition, calculations indicate that a unique non-local topological spin order emerges simultaneously as cold atoms become a superfluid below a critical temperature. We have also estimated fluctuation-dependent critical frequencies for half-quantum vortex nucleation in rotating optical traps and discussed probing these excitations in experiments.Comment: 5 pages, 2 figures; revised version accepted by Europhysics Letter

    Implications of MDCK cell heterogeneity in cell-based influenza vaccine production

    Get PDF
    Influenza is a global public health issue that causes serious illness with high mortality rate. Currently, Madin-Darby canine kidney (MDCK) cell culture-based influenza vaccine production moving up to the front as an inexorable trend for the substitution of egg-based vaccine production, owing to its high degree of flexibility and scalability. However, MDCK cells are a continuous cell line and comprise a heterogeneous pool of non-clonal cells that differ in morphological as well as functional features in influenza virus production. The impurity of cell population may lead to fugacious tendency in virus production, and long-term culture may bring potential risk of unstable viral production or vaccine quality as cells in MDCK subclonal population may encounter unexpected manifestation of chromosomal rearrangement, loss of the virus susceptibility, or reduction of the virus partials packaging capability during the culture. Although many details of the influenza virus life cycle have already been unraveled, little is known about the ability of subclones in virus infection, intracellular replication, and virus release during viral vaccine production process. With the widely utilizing of omics-based approaches and progressively accumulating of omics database, transcriptome profile analysis will be a powerful strategy to explore the mechanism of cell heterogeneity, providing great significance for the development of robust virus producing cell line and robust virus production process. This work aims to explore a deeper understanding on the MDCK cell heterogeneity used in influenza virus production. For this purpose, a MDCK cell line that has been extensively used in industrial production was subcloned and examined for the influenza virus productivity. The virus productivity spread over a wide range of more than 300-fold among different clones, which revealed large variations in their ability to produce progeny viruses. The high and low producer as well as parent cell population were expanded to explore the intracellular virus propagation process, and the expression levels of all the annotated genes were quantified across the different subclones using RNA-seq. The RT-qPCR results showed that the influenza virus RNA synthesis and virus release differed dramatically among subclones during a synchronized single-cycle infection. Pathway analysis performed on the genes indicated that most of the genes are not differentially expressed, but a few key cellular metabolic pathways are differentially expressed among the subclones, especially the genes related to the virus infection, replication and release. These results spurs further hypothesis to improve our mechanistic understanding of cell line stability and virus propagation process, which will have significant impact on rationalizing cell line development of viral vaccine producing mammalian cells
    • …
    corecore