16,055 research outputs found

    Logical Learning Through a Hybrid Neural Network with Auxiliary Inputs

    Full text link
    The human reasoning process is seldom a one-way process from an input leading to an output. Instead, it often involves a systematic deduction by ruling out other possible outcomes as a self-checking mechanism. In this paper, we describe the design of a hybrid neural network for logical learning that is similar to the human reasoning through the introduction of an auxiliary input, namely the indicators, that act as the hints to suggest logical outcomes. We generate these indicators by digging into the hidden information buried underneath the original training data for direct or indirect suggestions. We used the MNIST data to demonstrate the design and use of these indicators in a convolutional neural network. We trained a series of such hybrid neural networks with variations of the indicators. Our results show that these hybrid neural networks are very robust in generating logical outcomes with inherently higher prediction accuracy than the direct use of the original input and output in apparent models. Such improved predictability with reassured logical confidence is obtained through the exhaustion of all possible indicators to rule out all illogical outcomes, which is not available in the apparent models. Our logical learning process can effectively cope with the unknown unknowns using a full exploitation of all existing knowledge available for learning. The design and implementation of the hints, namely the indicators, become an essential part of artificial intelligence for logical learning. We also introduce an ongoing application setup for this hybrid neural network in an autonomous grasping robot, namely as_DeepClaw, aiming at learning an optimized grasping pose through logical learning.Comment: 11 pages, 9 figures, 4 table

    Conserved Quantities and the Algebra of Braid Excitations in Quantum Gravity

    Get PDF
    We derive conservation laws from interactions of braid-like excitations of embedded framed spin networks in Quantum Gravity. We also demonstrate that the set of stable braid-like excitations form a noncommutative algebra under braid interaction, in which the set of actively-interacting braids is a subalgebra.Comment: 26 pages, discussion expanded, accepted by Nucl. Phys.

    DeepICP: An End-to-End Deep Neural Network for 3D Point Cloud Registration

    Full text link
    We present DeepICP - a novel end-to-end learning-based 3D point cloud registration framework that achieves comparable registration accuracy to prior state-of-the-art geometric methods. Different from other keypoint based methods where a RANSAC procedure is usually needed, we implement the use of various deep neural network structures to establish an end-to-end trainable network. Our keypoint detector is trained through this end-to-end structure and enables the system to avoid the inference of dynamic objects, leverages the help of sufficiently salient features on stationary objects, and as a result, achieves high robustness. Rather than searching the corresponding points among existing points, the key contribution is that we innovatively generate them based on learned matching probabilities among a group of candidates, which can boost the registration accuracy. Our loss function incorporates both the local similarity and the global geometric constraints to ensure all above network designs can converge towards the right direction. We comprehensively validate the effectiveness of our approach using both the KITTI dataset and the Apollo-SouthBay dataset. Results demonstrate that our method achieves comparable or better performance than the state-of-the-art geometry-based methods. Detailed ablation and visualization analysis are included to further illustrate the behavior and insights of our network. The low registration error and high robustness of our method makes it attractive for substantial applications relying on the point cloud registration task.Comment: 10 pages, 6 figures, 3 tables, typos corrected, experimental results updated, accepted by ICCV 201

    SeeThruFinger: See and Grasp Anything with a Soft Touch

    Full text link
    We present SeeThruFinger, a soft robotic finger with an in-finger vision for multi-modal perception, including visual perception and tactile sensing, for geometrically adaptive and real-time reactive grasping. Multi-modal perception of intrinsic and extrinsic interactions is critical in building intelligent robots that learn. Instead of adding various sensors for different modalities, a preferred solution is to integrate them into one elegant and coherent design, which is a challenging task. This study leverages the Soft Polyhedral Network design as a robotic finger, capable of omni-directional adaptation with an unobstructed view of the finger's spatial deformation from the inside. By embedding a miniature camera underneath, we achieve the visual perception of the external environment by inpainting the finger mask using E2FGV, which can be used for object detection in the downstream tasks for grasping. After contacting the objects, we use real-time object segmentation algorithms, such as XMem, to track the soft finger's spatial deformations. We also learned a Supervised Variational Autoencoder to enable tactile sensing of 6D forces and torques for reactive grasp. As a result, we achieved multi-modal perception, including visual perception and tactile sensing, and soft, adaptive object grasping within a single vision-based soft finger design compatible with multi-fingered robotic grippers.Comment: 10 pages, 5 figures, 1 table, submitted to Soft Robotics under revie
    • …
    corecore