210 research outputs found

    Characterization of the Quantized Hall Insulator Phase in the Quantum Critical Regime

    Full text link
    The conductivity σ\sigma and resistivity ρ\rho tensors of the disordered Hofstadter model are mapped as functions of Fermi energy EFE_F and temperature TT in the quantum critical regime of the plateau-insulator transition (PIT). The finite-size errors are eliminated by using the non-commutative Kubo-formula. The results reproduce all the key experimental characteristics of this transition in Integer Quantum Hall (IQHE) systems. In particular, the Quantized Hall Insulator (QHI) phase is detected and analyzed. The presently accepted characterization of the QHI phase in the quantum critical regime, based entirely on experimental data, is fully supported by our theoretical investigation.Comment: The scaling functions were computed and the data was extrapolated to T=0. The Quantized Hall Insulator phase disappears at T=

    Measuring the phonon-assisted spectral function by using a non-quilibrium three-terminal single-molecular device

    Full text link
    The electron transport through a three-terminal single-molecular transistor (SMT) is theoretically studied. We find that the differential conductance of the third and weakly coupled terminal versus its voltage matches well with the spectral function versus the energy when certain conditions are met. Particularly, this excellent matching is maintained even for complicated structure of the phonon-assisted side peaks. Thus, this device offers an experimental approach to explore the shape of the phonon-assisted spectral function in detail. In addition we discuss the conditions of a perfect matching. The results show that at low temperatures the matching survives regardless of the bias and the energy levels of the SMT. However, at high temperatures, the matching is destroyed.Comment: 9 pages, 5 figure

    Building topological device through emerging robust helical surface states

    Full text link
    We propose a nonlocal manipulation method to build topological devices through emerging robust helical surface states in Z_2=0 topological systems. Specifically, in a ribbon of Z_2=0 Bernevig- Hughes-Zhang (BHZ) model with finite-size effect, if magnetic impurities are doped on the top (bottom) edge, the edge states on the bottom (top) edge can be altered according to the strengths and directions of these magnetic impurities. Consequently, the backscattering between the emerging robust helical edge states and gapped normal edge states due to finite-size confinement is also changed, which makes the system alternate between a perfect one-channel conductor and a perfect insulator. This effect allows us to fabricate topological devices with high on-off ratio. Moreover, it can also be generalized to 3D model and more realistic Cd3As2 type Dirac semimetals.Comment: 7 pages, 6 figure

    One-dimensional quantum channel in a graphene line defect

    Full text link
    Using a tight-binding model, we study a line defect in graphene where a bulk energy gap is opened by sublattice symmetry breaking. It is found that sublattice symmetry breaking may induce many configurations that correspond to different band spectra. In particular, a gapless state is observed for a configuration which hold a mirror symmetry with respect to the line defect. We find that this gapless state originates from the line defect and is independent of the width of the graphene ribbon, the location of the line defect, and the potentials in the edges of the ribbon. In particular, the gapless state can be controlled by the gate voltage embedded below the line defect. Finally, this result is supported with conductance calculations. This study shows how a quantum channel could be constructed using a line defect, and how the quantum channel can be controlled by tuning the gate voltage embedded below the line defect.Comment: 8 pages, 10 figure
    corecore