113 research outputs found

    Structure and function of Zika virus NS5 protein: perspectives for drug design.

    Get PDF
    Zika virus (ZIKV) belongs to the positive-sense single-stranded RNA-containing Flaviviridae family. Its recent outbreak and association with human diseases (e.g. neurological disorders) have raised global health concerns, and an urgency to develop a therapeutic strategy against ZIKV infection. However, there is no currently approved antiviral against ZIKV. Here we present a comprehensive overview on recent progress in structure-function investigation of ZIKV NS5 protein, the largest non-structural protein of ZIKV, which is responsible for replication of the viral genome, RNA capping and suppression of host interferon responses. Structural comparison of the N-terminal methyltransferase domain and C-terminal RNA-dependent RNA polymerase domain of ZIKV NS5 with their counterparts from related viruses provides mechanistic insights into ZIKV NS5-mediated RNA replication, and identifies residues critical for its enzymatic activities. Finally, a collection of recently identified small molecule inhibitors against ZIKV NS5 or its closely related flavivirus homologues are also discussed

    Structural basis for DNMT3A-mediated de novo DNA methylation.

    Get PDF
    DNA methylation by de novo DNA methyltransferases 3A (DNMT3A) and 3B (DNMT3B) at cytosines is essential for genome regulation and development. Dysregulation of this process is implicated in various diseases, notably cancer. However, the mechanisms underlying DNMT3 substrate recognition and enzymatic specificity remain elusive. Here we report a 2.65-ångström crystal structure of the DNMT3A-DNMT3L-DNA complex in which two DNMT3A monomers simultaneously attack two cytosine-phosphate-guanine (CpG) dinucleotides, with the target sites separated by 14 base pairs within the same DNA duplex. The DNMT3A-DNA interaction involves a target recognition domain, a catalytic loop, and DNMT3A homodimeric interface. Arg836 of the target recognition domain makes crucial contacts with CpG, ensuring DNMT3A enzymatic preference towards CpG sites in cells. Haematological cancer-associated somatic mutations of the substrate-binding residues decrease DNMT3A activity, induce CpG hypomethylation, and promote transformation of haematopoietic cells. Together, our study reveals the mechanistic basis for DNMT3A-mediated DNA methylation and establishes its aetiological link to human disease

    Structural basis for the H2AK119ub1-specific DNMT3A-nucleosome interaction.

    Get PDF
    Isoform 1 of DNA methyltransferase DNMT3A (DNMT3A1) specifically recognizes nucleosome monoubiquitylated at histone H2A lysine-119 (H2AK119ub1) for establishment of DNA methylation. Mis-regulation of this process may cause aberrant DNA methylation and pathogenesis. However, the molecular basis underlying DNMT3A1-nucleosome interaction remains elusive. Here we report the cryo-EM structure of DNMT3A1s ubiquitin-dependent recruitment (UDR) fragment complexed with H2AK119ub1-modified nucleosome. DNMT3A1 UDR occupies an extensive nucleosome surface, involving the H2A-H2B acidic patch, a surface groove formed by H2A and H3, nucleosomal DNA, and H2AK119ub1. The DNMT3A1 UDRs interaction with H2AK119ub1 affects the functionality of DNMT3A1 in cells in a context-dependent manner. Our structural and biochemical analysis also reveals competition between DNMT3A1 and JARID2, a cofactor of polycomb repression complex 2 (PRC2), for nucleosome binding, suggesting the interplay between different epigenetic pathways. Together, this study reports a molecular basis for H2AK119ub1-dependent DNMT3A1-nucleosome association, with important implications in DNMT3A1-mediated DNA methylation in development
    • …
    corecore