3,834 research outputs found

    Responses and sensitivities of maize phenology to climate change from 1971 to 2020 in Henan Province, China.

    Get PDF
    Climate change affects many aspects of the physiological and biochemical processes of growing maize and ultimately its yield. A comprehensive climate suitability model is proposed that quantifies the effects of temperature, precipitation, solar radiation, and wind in different phenological stages of maize. It is calibrated using weather and yield data from China's Henan Province. The comprehensive suitability model showed the capability of correctly hindcasting observed temporal and spatial changes in maize phenology in response to climatic factors. The predicted yield based on the suitability model can well match the recorded field yield very well from 1971-2020. The results of correlation showed that the yields are more closely related to multi-weather factors, temperature and precipitation than to solar radiation and wind. The sensitivity analysis illustrates that temperature and precipitation are the dominant weather factors affecting yield changes based on a direct differentiation method. The comprehensive suitability model can provide a scientific support and analysis tool for predicting grain production considering climate changes

    A novel method of analyzing proline synonymous codons in E. coli

    Get PDF
    AbstractProline is a special imino acid in protein and the isomerization of the prolyl peptide bond has notable biological significance and influences the final structure of protein greatly, so the correlation between proline synonymous codon usage and local amino acid, the correlation between proline synonymous codon usage and the isomerization of the prolyl peptide bond were both investigated in the Escherichia coli genome by using a novel method based on information theory. The results show that in peptide chain, the residue at the first position C-terminal influences the usage of proline synonymous codon greatly and proline synonymous codons contain some factors influencing the isomerization of the prolyl peptide bond

    Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little information is available on the amelioration of boron (B) on aluminum (Al)-induced photosynthesis inhibition. Sour pummelo (<it>Citrus grandis</it>) seedlings were irrigated for 18 weeks with nutrient solution containing 4 B levels (2.5, 10, 25 and 50 ÎŒM H<sub>3</sub>BO<sub>3</sub>) × 2 Al levels (0 and 1.2 mM AlCl<sub>3</sub>·6H<sub>2</sub>O). The objectives of this study were to determine how B alleviates Al-induced growth inhibition and to test the hypothesis that Al-induced photosynthesis inhibition can be alleviated by B <it>via </it>preventing Al from getting into shoots.</p> <p>Results</p> <p>B had little effect on plant growth, root, stem and leaf Al, leaf chlorophyll (Chl), CO<sub>2 </sub>assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), Chl a fluorescence (OJIP) transient and related parameters without Al stress except that root, stem and leaf B increased with increasing B supply and that 50 ÎŒM B decreased slightly root dry weight. Al-treated roots, stems and leaves displayed a higher or similar B. B did not affect root Al under Al stress, but decreased stem and leaf Al level. Shoot growth is more sensitive to Al stress than root growth, CO<sub>2 </sub>assimilation, Chl, Rubisco, OJIP transient and most related parameters. Al-treated leaves showed decreased CO<sub>2 </sub>assimilation, but increased or similar intercellular CO<sub>2 </sub>concentration. Both initial and total Rubisco activity in Al-treated leaves decreased to a lesser extent than CO<sub>2 </sub>assimilation. Al decreased maximum quantum yield of primary photochemistry and total performance index, but increased minimum fluorescence, K-band, relative variable fluorescence at J- and I-steps. B could alleviate Al-induced increase or decrease for all these parameters. Generally speaking, the order of B effectiveness was 25 ÎŒM > 10 ÎŒM ≄ 50 ÎŒM (excess B) > 2.5 ÎŒM.</p> <p>Conclusion</p> <p>We propose that Al-induced photosynthesis inhibition was mainly caused by impaired photosynthetic electron transport chain, which may be associated with growth inhibition. B-induced amelioration of root inhibition was probably caused by B-induced changes in Al speciation and/or sub-cellular compartmentation. However, B-induced amelioration of shoot and photosynthesis inhibition and photoinhibitory damage occurring at both donor and acceptor sides of photosystem II could be due to less Al accumulation in shoots.</p

    Attosecond streaking of Cohen-Fano interferences in the photoionization of H2+_2^+

    Full text link
    We present the first numerical simulation of the time delay in the photoionization of the simplest diatomic molecule H2+_2^+ as observed by attosecond streaking. We show that the strong variation of the Eisenbud-Wigner-Smith time delay as a function of energy and emission angle becomes observable in the streaking time shift provided laser field-induced components are accounted for. The strongly enhanced photoemission time shifts are traced to destructive Cohen-Fano (or two-center) interferences. Signatures of these interferences in the streaking trace are shown to be enhanced when the ionic fragments are detected in coincidence

    The Application of Downhole Vibration Factor in Drilling Tool Reliability Big Data Analytics - A Review

    Get PDF
    In the challenging downhole environment, drilling tools are normally subject to high temperature, severe vibration, and other harsh operation conditions. The drilling activities generate massive field data, namely field reliability big data (FRBD), which includes downhole operation, environment, failure, degradation, and dynamic data. Field reliability big data has large size, high variety, and extreme complexity. FRBD presents abundant opportunities and great challenges for drilling tool reliability analytics. Consequently, as one of the key factors to affect drilling tool reliability, the downhole vibration factor plays an essential role in the reliability analytics based on FRBD. This paper reviews the important parameters of downhole drilling operations, examines the mode, physical and reliability impact of downhole vibration, and presents the features of reliability big data analytics. Specifically, this paper explores the application of vibration factor in reliability big data analytics covering tool lifetime/failure prediction, prognostics/diagnostics, condition monitoring (CM), and maintenance planning and optimization. Furthermore, the authors highlight the future research about how to better apply the downhole vibration factor in reliability big data analytics to further improve tool reliability and optimize maintenance planning

    Robust beam splitter with fast quantum state transfer through a topological interface

    Full text link
    The Su-Schrieffer-Heeger (SSH) model, commonly used for robust state transfers through topologically protected edge pumping, has been generalized and exploited to engineer diverse functional quantum devices. Here, we propose to realize a fast topological beam splitter based on a generalized SSH model by accelerating the quantum state transfer (QST) process essentially limited by adiabatic requirements. The scheme involves delicate orchestration of the instantaneous energy spectrum through exponential modulation of nearest neighbor coupling strengths and onsite energies, yielding a significantly accelerated beam splitting process. Due to properties of topological pumping and accelerated QST, the beam splitter exhibits strong robustness against parameter disorders and losses of system. In addition, the model demonstrates good scalability and can be extended to two-dimensional crossed-chain structures to realize a topological router with variable numbers of output ports. Our work provides practical prospects for fast and robust topological QST in feasible quantum devices in large-scale quantum information processing.Comment: To be published in Frontiers of Physic

    An association of a simultaneous nuclear and cytoplasmic localization of Fra-1 with breast malignancy

    Get PDF
    BACKGROUND: Overexpression of Fra-1 in fibroblasts causes anchorage-independent cell growth and oncogenic transformation. A high level of Fra-1 expression is found in various tumors and tumorigenic cell lines, suggesting that Fra-1 may be involved in malignant progression. This study aimed to investigate the significance of Fra-1 expression in breast carcinogenesis. METHODS: The expression of Fra-1 was investigated by immunohistochemistry in neoplastic breast diseases ranging from benign fibroadenoma to very aggressive undifferentiated carcinoma. The correlations of Fra-1 expression with other indicators of breast carcinoma prognosis (ER, PR and ErbB2 receptors) were analyzed. RESULTS: All neoplastic breast tissues, either benign or malignant breast tissues, were nuclear immunoreactive for Fra-1-recognizing antibody. The pattern of Fra-1 expression by benign neoplastic cells was predominantly nuclear. However, the nuclear/cytoplasmic concomitant immunoreactivity was observed in all types of breast carcinomas. A clear shift in Fra-1 immunoreactivity, from an exclusively nuclear to a simultaneous nuclear and cytoplasmic localization was noticed in ~90% of breast carcinomas. CONCLUSION: The overall expression, pattern and intensity of Fra-1 proteins were correlated with breast oncogenesis. Overexpression of Fra-1, leading to a persistent high cytoplasmic accumulation, may play a role in the process of breast carcinogenesis

    CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the effects of P deficiency on tea (<it>Camellia sinensis </it>(L.) O. Kuntze) growth, P uptake and utilization as well as leaf gas exchange and Chl a fluorescence have been investigated, very little is known about the effects of P deficiency on photosynthetic electron transport, photosynthetic enzymes and carbohydrates of tea leaves. In this study, own-rooted 10-month-old tea trees were supplied three times weekly for 17 weeks with 500 mL of nutrient solution at a P concentration of 0, 40, 80, 160, 400 or 1000 ÎŒM. This objective of this study was to determine how P deficiency affects CO<sub>2 </sub>assimilation, Rubisco, carbohydrates and photosynthetic electron transport in tea leaves to understand the mechanism by which P deficiency leads to a decrease in CO<sub>2 </sub>assimilation.</p> <p>Results</p> <p>Both root and shoot dry weight increased as P supply increased from 0 to 160 ÎŒM, then remained unchanged. P-deficient leaves from 0 to 80 ÎŒM P-treated trees showed decreased CO<sub>2 </sub>assimilation and stomatal conductance, but increased intercellular CO<sub>2 </sub>concentration. Both initial and total Rubisco activity, contents of Chl and total soluble protein in P-deficient leaves decreased to a lesser extent than CO<sub>2 </sub>assimilation. Contents of sucrose and starch were decreased in P-deficient leaves, whereas contents of glucose and fructose did not change significantly except for a significant increase in the lowest P leaves. OJIP transients from P-deficient leaves displayed a rise at the O-step and a depression at the P-step, accompanied by two new steps at about 150 ÎŒs (L-step) and at about 300 ÎŒs (K-step). RC/CS<sub>o</sub>, TR<sub>o</sub>/ABS (or F<sub>v</sub>/F<sub>m</sub>), ET<sub>o</sub>/ABS, RE<sub>o</sub>/ABS, maximum amplitude of IP phase, PI<sub>abs </sub>and PI<sub>tot, abs </sub>were decreased in P-deficient leaves, while V<sub>J</sub>, V<sub>I </sub>and dissipated energy were increased.</p> <p>Conclusion</p> <p>P deficiency decreased photosynthetic electron transport capacity by impairing the whole electron transport chain from the PSII donor side up to the PSI, thus decreasing ATP content which limits RuBP regeneration, and hence, the rate of CO<sub>2 </sub>assimilation. Energy dissipation is enhanced to protect P-deficient leaves from photo-oxidative damage in high light.</p
    • 

    corecore