17 research outputs found

    Airborne Prokaryotic, Fungal and Eukaryotic Communities of an Urban Environment in the UK

    Get PDF
    Bioaerosols often contain human pathogens and allergens affecting public health. However, relatively little attention has been given to bioaerosols compared with non-biological aerosols. In this study, we aimed to identify bioaerosol compositions in Manchester, UK by applying high throughput sequencing methods and to find potential sources. Samples were collected at Manchester Air Quality Super Site at the Firs Environmental Research Station in November 2019 and in February 2020. Total DNA has been extracted and sequenced targeting the 16S rRNA gene of prokaryotes, ITS region of fungal DNA and 18S rRNA gene of eukaryotes. We found marine environment-associated bacteria and archaea were relatively more abundant in the February 2020 samples compared with the November 2019 samples, consistent with the North West marine origin based on wind back-trajectory analysis. In contrast, an OTU belonging to Methylobacterium, which includes many species resistant to heavy metals, was relatively more abundant in November 2019 when there were higher metal concentrations. Fungal taxa that fruit all year were relatively more abundant in the February 2020 samples while autumn fruiting species generally had higher relative abundance in the November 2019 samples. There were higher relative abundances of land plants and algae in the February 2020 samples based on 18S rRNA gene sequencing. One of the OTUs belonging to the coniferous yew genus Taxus was more abundant in the February 2020 samples agreeing with the usual pollen season of yews in the UK which is from mid-January until late April. The result from this study suggests a potential application of bioaerosol profiling for tracing the source of atmospheric particles

    Evaluation of Prebiotics through an In Vitro Gastrointestinal Digestion and Fecal Fermentation Experiment: Further Idea on the Implementation of Machine Learning Technique

    No full text
    Prebiotics are non-digestible food ingredients that promote the growth of beneficial gut microorganisms and foster their activities. The performance of prebiotics has often been tested in mouse models in which the gut ecology differs from that of humans. In this study, we instead performed an in vitro gastrointestinal digestion and fecal fermentation experiment to evaluate the efficiency of eight different prebiotics. Feces obtained from 11 different individuals were used to ferment digested prebiotics. The total DNA from each sample was extracted and sequenced through Illumina MiSeq for microbial community analysis. The amount of short-chain fatty acids was assessed through gas chromatography. We found links between community shifts and the increased amount of short-chain fatty acids after prebiotics treatment. The results from differential abundance analysis showed increases in beneficial gut microorganisms, such as Bifidobacterium, Faeclibacterium, and Agathobacter, after prebiotics treatment. We were also able to construct well-performing machine-learning models that could predict the amount of short-chain fatty acids based on the gut microbial community structure. Finally, we provide an idea for further implementation of machine-learning techniques to find customized prebiotics

    Characterization of the Gut Microbiota of Mackerel Icefish, <i>Champsocephalus gunnari</i>

    No full text
    The gut microbiome of Antarctic fish species has rarely been studied due to difficulties in obtaining samples. The mackerel icefish, Champsocephalus gunnari, primary feeds on krill and is one of the key species in the food web of the Southern Ocean. In this study, we characterized the gut microbiota of C. gunnari by sequencing the V3–V4 region of the bacterial 16S rRNA gene based on the Illumina MiSeq sequencing platform. We collected three types of samples: (1) whole intestine, (2) intestinal wall, and (3) intestinal content. The results showed no significant difference in the alpha diversity between different sample types. However, the microbial community composition of intestinal wall samples was distinct from other sample types. The relative abundance of Photobacterium was higher in intestinal content compared with the walls, which could be due to their chitinolytic activity. In contrast, potential pathogens such as Escherichia, Shigella, and Pseudomonas relatively more abundant in the intestinal wall compared with the intestinal contents. Unlike the gut microbiome of other marine fish species, Vibrio and Lactobacillus were nearly absent in the gut microbiome of C. gunnari. Functional gene profile of the gut microbiome predicted by PICRUSt2 showed higher relative abundance of genes related to biodegradation of nutrients in intestinal content. In contrast, the relative abundance of genes related to biosynthesis of important metabolites, such as menaquinols, was higher in intestinal wall. The difference in the microbial community structure of intestinal wall and intestinal content found in our study supports niche separation in the gut environment and emphasizes the importance of collecting intestinal wall samples in addition to intestinal content samples to understand the full picture of gut microbiome. This is the first time that the gut microbiome of mackerel icefish has been characterized using next-generation sequencing

    Dewetting Based Fabrication of Fibrous Micro-Scaffolds as Potential Injectable Cell Carriers

    No full text
    Although regenerative medicine utilizing tissue scaffolds has made enormous strides in recent years, many constraints still hamper their effectiveness. A limitation of many scaffolds is that they form surface patches, which are not particularly effective for some types of “wounds” that are deep within tissues, e.g., stroke and myocardial infarction. In this study, we reported the generation of fibrous micro-scaffolds feasible for delivering cells by injection into the tissue parenchyma. The micro-scaffolds (widths \u3c 100 μm) were made by dewetting of poly(lactic-co-glycolic acid) thin films containing parallel strips, and cells were seeded to form cell/polymer micro-constructs during or post the micro-scaffold fabrication process. Five types of cells including rat induced vascular progenitor cells were assessed for the formation of the micro-constructs. Critical factors in forming fibrous micro-scaffolds via dewetting of polymer thin films were found to be properties of polymers and supporting substrates, temperature, and proteins in the culture medium. Also, the ability of cells to attach to the micro-scaffolds was essential in forming cell/polymer micro-constructs. Both in vitro and in vivo assessments of injecting these micro-scaffolding constructs showed, as compared to free cells, enhanced cell retention at the injected site, which could lead to improved tissue engineering and regeneration

    Modified bolster dressing with continuous suction improves skin graft survival for an oral cavity wound

    No full text
    Abstract Background Skin engraftment of intraoral defects is known to be inconsistent due to mobility of the oral structure, uneven wounds, and accumulation of saliva under the skin graft. To improve the success rate of oral skin graft, we proposed a novel and simple dressing technique for intraoral skin graft to control saliva accumulation, in comparison with the conventional bolster dressing. Methods We retrospectively reviewed 31 patients reconstructed with skin graft in their intraoral defect. The patients were divided into two groups; conventional bolster group (n = 21) and modified bolster group (n = 10). In the modified bolster group, a polyvinyl alcohol sponge was designed to fit the skin graft and a suction drain was inserted with tagging suture to apply continuous suction. We analyzed the success rate, the size of the skin grafts and clinical variables of each method. Results The overall success rate of oral skin graft was not different between the two groups (90.0 and 90.5%). However, partial necrosis in the engrafted skin was observed frequently in the control group (57.1% versus 20.0%). The relative engrafted area was significantly higher in the modified bolster group (55.0 ± 11.6% versus 23.0 ± 18.7%, p = 0.015). The duration of bolster dressing and the time to start an oral diet were shorter in the modified bolster group. Conclusions Our modified method could be easily applied for removing saliva accumulation under a skin graft and for enhancing skin engraftment of an oral cavity wound
    corecore