53 research outputs found

    DropPos: Pre-Training Vision Transformers by Reconstructing Dropped Positions

    Full text link
    As it is empirically observed that Vision Transformers (ViTs) are quite insensitive to the order of input tokens, the need for an appropriate self-supervised pretext task that enhances the location awareness of ViTs is becoming evident. To address this, we present DropPos, a novel pretext task designed to reconstruct Dropped Positions. The formulation of DropPos is simple: we first drop a large random subset of positional embeddings and then the model classifies the actual position for each non-overlapping patch among all possible positions solely based on their visual appearance. To avoid trivial solutions, we increase the difficulty of this task by keeping only a subset of patches visible. Additionally, considering there may be different patches with similar visual appearances, we propose position smoothing and attentive reconstruction strategies to relax this classification problem, since it is not necessary to reconstruct their exact positions in these cases. Empirical evaluations of DropPos show strong capabilities. DropPos outperforms supervised pre-training and achieves competitive results compared with state-of-the-art self-supervised alternatives on a wide range of downstream benchmarks. This suggests that explicitly encouraging spatial reasoning abilities, as DropPos does, indeed contributes to the improved location awareness of ViTs. The code is publicly available at https://github.com/Haochen-Wang409/DropPos.Comment: Accepted by NeurIPS 202

    Knowledge Editing for Large Language Models: A Survey

    Full text link
    Large language models (LLMs) have recently transformed both the academic and industrial landscapes due to their remarkable capacity to understand, analyze, and generate texts based on their vast knowledge and reasoning ability. Nevertheless, one major drawback of LLMs is their substantial computational cost for pre-training due to their unprecedented amounts of parameters. The disadvantage is exacerbated when new knowledge frequently needs to be introduced into the pre-trained model. Therefore, it is imperative to develop effective and efficient techniques to update pre-trained LLMs. Traditional methods encode new knowledge in pre-trained LLMs through direct fine-tuning. However, naively re-training LLMs can be computationally intensive and risks degenerating valuable pre-trained knowledge irrelevant to the update in the model. Recently, Knowledge-based Model Editing (KME) has attracted increasing attention, which aims to precisely modify the LLMs to incorporate specific knowledge, without negatively influencing other irrelevant knowledge. In this survey, we aim to provide a comprehensive and in-depth overview of recent advances in the field of KME. We first introduce a general formulation of KME to encompass different KME strategies. Afterward, we provide an innovative taxonomy of KME techniques based on how the new knowledge is introduced into pre-trained LLMs, and investigate existing KME strategies while analyzing key insights, advantages, and limitations of methods from each category. Moreover, representative metrics, datasets, and applications of KME are introduced accordingly. Finally, we provide an in-depth analysis regarding the practicality and remaining challenges of KME and suggest promising research directions for further advancement in this field.Comment: 33 page

    Learning Domain-Aware Detection Head with Prompt Tuning

    Full text link
    Domain adaptive object detection (DAOD) aims to generalize detectors trained on an annotated source domain to an unlabelled target domain. However, existing methods focus on reducing the domain bias of the detection backbone by inferring a discriminative visual encoder, while ignoring the domain bias in the detection head. Inspired by the high generalization of vision-language models (VLMs), applying a VLM as the robust detection backbone following a domain-aware detection head is a reasonable way to learn the discriminative detector for each domain, rather than reducing the domain bias in traditional methods. To achieve the above issue, we thus propose a novel DAOD framework named Domain-Aware detection head with Prompt tuning (DA-Pro), which applies the learnable domain-adaptive prompt to generate the dynamic detection head for each domain. Formally, the domain-adaptive prompt consists of the domain-invariant tokens, domain-specific tokens, and the domain-related textual description along with the class label. Furthermore, two constraints between the source and target domains are applied to ensure that the domain-adaptive prompt can capture the domains-shared and domain-specific knowledge. A prompt ensemble strategy is also proposed to reduce the effect of prompt disturbance. Comprehensive experiments over multiple cross-domain adaptation tasks demonstrate that using the domain-adaptive prompt can produce an effectively domain-related detection head for boosting domain-adaptive object detection

    AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph

    Full text link
    Cognitive research indicates that abstraction ability is essential in human intelligence, which remains under-explored in language models. In this paper, we present AbsPyramid, a unified entailment graph of 221K textual descriptions of abstraction knowledge. While existing resources only touch nouns or verbs within simplified events or specific domains, AbsPyramid collects abstract knowledge for three components of diverse events to comprehensively evaluate the abstraction ability of language models in the open domain. Experimental results demonstrate that current LLMs face challenges comprehending abstraction knowledge in zero-shot and few-shot settings. By training on our rich abstraction knowledge, we find LLMs can acquire basic abstraction abilities and generalize to unseen events. In the meantime, we empirically show that our benchmark is comprehensive to enhance LLMs across two previous abstraction tasks.Comment: Findings of NAACL202

    TILFA: A Unified Framework for Text, Image, and Layout Fusion in Argument Mining

    Full text link
    A main goal of Argument Mining (AM) is to analyze an author's stance. Unlike previous AM datasets focusing only on text, the shared task at the 10th Workshop on Argument Mining introduces a dataset including both text and images. Importantly, these images contain both visual elements and optical characters. Our new framework, TILFA (A Unified Framework for Text, Image, and Layout Fusion in Argument Mining), is designed to handle this mixed data. It excels at not only understanding text but also detecting optical characters and recognizing layout details in images. Our model significantly outperforms existing baselines, earning our team, KnowComp, the 1st place in the leaderboard of Argumentative Stance Classification subtask in this shared task.Comment: Accepted to the 10th Workshop on Argument Mining, co-located with EMNLP 202

    Algorithms for Adaptive Experiments that Trade-off Statistical Analysis with Reward: Combining Uniform Random Assignment and Reward Maximization

    Full text link
    Multi-armed bandit algorithms like Thompson Sampling (TS) can be used to conduct adaptive experiments, in which maximizing reward means that data is used to progressively assign participants to more effective arms. Such assignment strategies increase the risk of statistical hypothesis tests identifying a difference between arms when there is not one, and failing to conclude there is a difference in arms when there truly is one. We tackle this by introducing a novel heuristic algorithm, called TS-PostDiff (Posterior Probability of Difference). TS-PostDiff takes a Bayesian approach to mixing TS and Uniform Random (UR): the probability a participant is assigned using UR allocation is the posterior probability that the difference between two arms is 'small' (below a certain threshold), allowing for more UR exploration when there is little or no reward to be gained. We evaluate TS-PostDiff against state-of-the-art strategies. The empirical and simulation results help characterize the trade-offs of these approaches between reward, False Positive Rate (FPR), and statistical power, as well as under which circumstances each is effective. We quantify the advantage of TS-PostDiff in performing well across multiple differences in arm means (effect sizes), showing the benefits of adaptively changing randomization/exploration in TS in a "Statistically Considerate" manner: reducing FPR and increasing statistical power when differences are small or zero and there is less reward to be gained, while exploiting more when differences may be large. This highlights important considerations for future algorithm development and analysis to better balance reward and statistical analysis
    corecore