329 research outputs found
Laser-assisted transfer for rapid additive micro-fabrication of electronic devices
Laser-based micro-fabrication techniques can be divided into the two broad categories of subtractive and additive processing. Subtractive embraces the well-established areas of ablation, drilling, cutting and trimming, where the substrate material is post-processed into the desired final form or function. Additive describes a manufacturing process that most recently has captured the news in terms of 3-d printing, where materials and structures are assembled from scratch to form complex 3-d objects. While most additive 3-d printing methods are purely aimed at fabrication of structures, the ability to deposit material on the micron-scale enables the creation of functional, e.g. electronic or photonic, devices [1]. Laser-induced forward transfer (LIFT) is a method for the transfer of functional thin film materials with sub-micron to few millimetre feature sizes [2,3]. It has a unique advantage as the materials can be optimised beforehand in terms of their electrical, mechanical or optical properties. LIFT allows the intact transfer of solid, viscous or matrix-embedded films in an additive fashion. As a direct-write method, no lithography or post-processing is required and does not add complexity to existing laser machining systems, thus LIFT can be applied for the rapid and inexpensive fabrication or repair of electronic devices. While the technique is not limited to a specific range of materials, only a few examples show transfer of inorganic semiconductors. So far, LIFT demonstration of materials such as silicon [4,5] have undergone melting, and hence a phase transition process during the transfer which may not be desirable, compromising or reducing the efficiency of a resulting device. Here, we present our first results on the intact transfer of solid thermoelectric semiconductor materials on a millimetre scale via nanosecond excimer laser-based LIFT. We have studied the transfer and its effect on the phase and physical properties of the printed materials and present a working thermoelectric generator as an example of such a device. Furthermore, results from initial experiments to transfer silicon onto polymeric substrates in an intact state via a Ti:sapphire femtosecond laser are also shown, which illustrate the utility of LIFT for printing micron-scale semiconductor features in the context of flexible electronic applications
Laser-induced forward transfer of thermoelectric materials on polymer and glass substrates
Laser-induced forward transfer (LIFT) is a laser-assisted direct write method that has been used to print a range of solids and rheological fluids. The donor that is to be printed is previously deposited onto a transparent support substrate that is usually referred to as a carrier. A highly energetic short-pulsed laser beam imaged through the transparent carrier onto the donor results in the forward transfer of a donor pixel onto a receiver substrate placed either in contact or a few microns apart. Solid films can be transferred with minimal change in their crystal and domain structure via LIFT
Rapid and mask-less laser-processing technique for the fabrication of microstructures in polydimethylsiloxane
We report a rapid laser-based method for structuring polydimethylsiloxane (PDMS) on the micron-scale. This mask-less method uses a digital multi-mirror device as a spatial light modulator to produce a given spatial intensity pattern to create arbitrarily shaped structures via either ablation or multi-photon photo-polymerisation in a master substrate, which is subsequently used to cast the complementary patterns in PDMS. This patterned PDMS mould was then used for micro-contact printing of ink and biological molecules
Productivity of Boran cattle maintained by chemoprophylaxis under trypanosomiasis risk
Evaluates the productivity of grade Boran cattle maintained by chemoprophylaxis under severe trypanosomiasis risk at Mkwaja ranch, Tanzania; uses data based on more than 20,000 calving records over the 10-year period from 1973 to 1982; discusses environmental influences on performance traits and links between tsetse population dynamics & cattle; includes comparison of Boran genotypes and its effect on pre-weaning growth characters
Nanofabrication technologies: high-throughput for tomorrow's metadevices
Fabrication fundamentals1. Serial versus parallel? Most are currently fabricated by serial writing….2. Additive or subtractive?3. Feature size required.4. One-off demonstration (journal paper) or volume production (in the shops by next Christmas…)5. What material?6. Cost….(+ normalise to 150mm diameter wafer)7. Time to fabricat
Complement in reproductive white adipose tissue characterizes the obese preeclamptic-like BPH/5 mouse prior to and during pregnancy
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Preeclampsia (PE) is a serious hypertensive disorder of pregnancy characterized by abnormal placental development with an unknown etiology. To better understand which women will develop PE, a number of maternal risk factors have been identified, including obesity. Visceral white adipose tissue (WAT) contains inflammatory mediators that may contribute to PE. To explore this, we utilized the blood pressure high (BPH)/5 mouse model of superimposed PE that spontaneously recapitulates the maternal PE syndrome. We hypothesized that BPH/5 visceralWAT adjacent to the female reproductive tract (reproductiveWAT) is a source of complement factors that contribute to the inflammatory milieu and angiogenic imbalance at the maternal-fetal interface in this model and in preeclamptic women. To test our hypothesis, we calorie-restricted BPH/5 females for two weeks prior to pregnancy and the first seven days of pregnancy, which attenuated complement component 3 (C3) but not complement factor B, nor complement factor D, (adipsin) in the reproductiveWAT or the implantation site in BPH/5. Furthermore, calorie restriction during pregnancy restored vascular endothelial and placental growth factor mRNA levels in the BPH/5 implantation site. These data show maternal reproductive WAT may be a source of increased C3 during pregnancy, which is increased at the maternal-fetal interface in preeclamptic BPH/5 mice. It also suggests that calorie restriction could regulate inflammatory mediators thought to contribute to placental dysfunction in PE. Future studies are necessary to examine the e_ect of calorie restriction on C3 throughout pregnancy and the role of maternal obesity in PE
Physicians' acquaintance with a new procedure results in higher patient referral: experience of Kosovo in coronary angiography
The first coronary angiography in Kosovo was completed in 2003. We analyzed coronary angiographies performed in our center from October 2003 until October 2009 divided into two 3-year periods. The aims of our study were: to compare the number of coronary angiographies completed in the two periods; to evaluate the prevalence of normal coronary angiographies diagnosed in the first period compared to the second period; and to assess the prevalence of advanced coronary artery disease in the first three years compared to the last three years. This was a prospective angiography study that included 1,139 patients. The first group had 422 patients, who underwent the angiography procedure during the first three years, and the second group had 717 patients that went through the procedure during the last three years. In the first year, 109 coronary angiographies were completed, followed by 137, 176, 213, 218 and 286 (P<0.001) procedures in the subsequent years. In the first period, a normal or near-normal coronary artery profile was found in 27% of patients, while this figure rose to approximately 39% in the second period (P=0.004). Advanced coronary artery disease was found in 45% of the patients who underwent coronary angiography during the first three years, whereas this figure was only 24% of cases during the second period (P<0.001). We believe that the availability of specialized resources and the physicians' familiarity with coronary angiography in our country influenced their decision to refer more patients for this procedure
Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-
We report the first observation of the baryonic flavor-changing neutral
current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a
statistical significance of 5.8 Gaussian standard deviations. This measurement
uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV
collected by the CDF II detector at the Tevatron collider. The total and
differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We
find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}.
We also report the first measurement of the differential branching ratio of B_s
-> phi mu+ mu- using 49 signal events. In addition, we report branching ratios
for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let
- …