1,402 research outputs found

    Study of nanostructured glass surfaces for photovoltaic applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Learning to Quantize Deep Networks by Optimizing Quantization Intervals with Task Loss

    Full text link
    Reducing bit-widths of activations and weights of deep networks makes it efficient to compute and store them in memory, which is crucial in their deployments to resource-limited devices, such as mobile phones. However, decreasing bit-widths with quantization generally yields drastically degraded accuracy. To tackle this problem, we propose to learn to quantize activations and weights via a trainable quantizer that transforms and discretizes them. Specifically, we parameterize the quantization intervals and obtain their optimal values by directly minimizing the task loss of the network. This quantization-interval-learning (QIL) allows the quantized networks to maintain the accuracy of the full-precision (32-bit) networks with bit-width as low as 4-bit and minimize the accuracy degeneration with further bit-width reduction (i.e., 3 and 2-bit). Moreover, our quantizer can be trained on a heterogeneous dataset, and thus can be used to quantize pretrained networks without access to their training data. We demonstrate the effectiveness of our trainable quantizer on ImageNet dataset with various network architectures such as ResNet-18, -34 and AlexNet, on which it outperforms existing methods to achieve the state-of-the-art accuracy

    Pseudocoarctation of the Aorta Associated with the Anomalous Origin of the Left Vertebral Artery: a Case Report

    Get PDF
    Pseudocoarctation of the aorta is a rare congenital anomaly of the aortic arch, and it has been described as an elongation of the aortic arch with "kinking" at the level of the ligamentum arteriosum without a pressure gradient across the lesion. The treatment for this condition is controversial. We report here on an unusual case of pseudocoarctation of the aorta associated with the anomalous origin of the left vertebral artery and we include a review of the medical literature

    Metastatic Lymph Node Ratio of Central Neck Compartment Has Predictive Values for Locoregional Recurrence in Papillary Thyroid Microcarcinoma

    Get PDF
    Objectives This study aimed to evaluate the significance of metastatic lymph node ratio (the ratio between the metastatic lymph node and the harvested lymph nodes; MLNR) in the central neck for the prediction of locoregional recurrence in patients with papillary thyroid microcarcinoma. Methods After reviewing medical records of papillary thyroid microcarcinoma patients who received total thyroidectomy with central neck node dissection, 573 consecutive adult patients were enrolled in this study, with a follow-up period of more than 36 months. Regarding the risk of recurrence, multivariate analyses were performed with the following variables; sex, age, multiplicity of the primary tumor, presence of pathological extrathyroidal extension, the level of postoperative stimulated serum thyroglobulin, the number of harvested lymph nodes, the number of lymph node metastasis and MLNR. Results The MLNR showed a predictive significance for the locoregional recurrence (P<0.05). Most recurrences were occurred in the lateral neck (n=12, 80%) with a median interval of 20 months. The lowest cutoff value of the MLNR for a meaningful separation of disease recurrence was 0.44 (hazard ratio, 8.86; 95% confidence interval, 1.49 to 52.58; P=0.001). Conclusion When the MLNR is higher than 0.44, there is an increased risk of locoregional recurrence mostly in the lateral neck. Therefore, MLNR of the central neck in a permanent or frozen biopsy may be helpful in decision making in the extent of thyroidectomy and/or the need for contralateral central neck lymph nodes dissection

    Prognostic Factors Affecting Surgical Outcomes in Squamous Cell Carcinoma of External Auditory Canal

    Get PDF
    Objectives Carcinomas of the external auditory canal (EAC) are rare, and management remains challenging. Previous studies seeking prognostic factors for EAC cancers included cancers other than carcinomas. In this study, we analyzed the treatment outcomes of, prognostic factors for, and survival rates associated with specifically squamous cell carcinoma (SCC) of the EAC. Methods A retrospective review of 26 consecutive patients diagnosed with SCCs of the EAC in a 10-year period was performed in terms of clinical presentation, stage, choice of surgical procedure, and adjunct therapy. Overall survival (OS) and recurrence-free survival (RFS) were calculated and univariate analysis of prognostic factors was performed. Results The median age of the 26 patients with SCCs of the EAC was 63 years (range, 40 to 72 years), and 16 males and 10 females were included. According to the modified University of Pittsburgh staging system, the T stages were T1 in 11, T2 in six, T3 in four, and T4 in five cases. The surgical procedures employed were wide excision in three cases, lateral temporal bone resection (LTBR) in 17, and extended LTBR in four, and subtotal temporal bone resection in two. Two patients underwent neoadjuvant chemotherapy, and two underwent adjuvant chemotherapy. One patient received preoperative radiation therapy, and eleven received postoperative radiation therapy. Of the possibly prognostic factors examined, advanced preoperative T stage and advanced overall stage were significant predictors of RFS, but not of OS. Conclusion The advanced T stage and overall stage were associated with decreased survival after surgical treatment in patients with SCC of the EAC, highlighting the importance of clinical vigilance and early detection

    Mesenchymal stem cells genetically engineered to express platelet-derived growth factor and heme oxygenase-1 ameliorate osteoarthritis in a canine model

    Get PDF
    Background Mesenchymal stem cells (MSCs) are used for the treatment of osteoarthritis (OA), and MSC genetic engineering is expected to enhance cartilage repair. Here, we aimed to investigate the effect of MSCs overexpressing platelet-derived growth factor (PDGF) or heme oxygenase-1 (HO-1) in chondrocytes and synovial cells with an OA phenotype and assess the in vivo efficacy of intra-articular injections of these MSCs in canine OA models. Methods Canine adipose-derived MSCs were transfected with canine PDGF (PDGF-MSCs) or HO-1 (HO-1-MSCs) using lentiviral vectors. Canine chondrocytes or synovial cells were stimulated with lipopolysaccharide (LPS) to mimic the inflammatory OA model and then co-cultured with MSCs, PDGF-MSCs, or HO-1-MSCs for 24 h and 72 h. The mRNA levels of pro-inflammatory, extracellular matrix-degradative/synthetic, or pain-related factors were measured after co-culture by real-time PCR. Furthermore, a surgery-induced canine OA model was established and the dogs were randomized into four groups: normal saline (n = 4), MSCs (n = 4), PDGF-MSCs (n = 4), and HO-1-MSCs (n = 4). The OA symptoms, radiographic OA severity, and serum matrix metallopeptidase (MMP)-13 levels were assessed before and 10 weeks after treatment, to evaluate the safety and efficacy of the modified MSCs. Results PDGF or HO-1 overexpression significantly reduced the expression of pro-inflammatory factors, MMP-13, and nerve growth factor elicited by LPS and increased that of aggrecan and collagen type 2 in chondrocytes (P < 0.05). In addition, the expression of aggrecanases was significantly downregulated in synovial cells, whereas that of tissue inhibitor of metalloproteinases was upregulated (P < 0.05). Furthermore, the co-cultured MSCs highly expressed genes that contributed to the maintenance of joint homeostasis (P < 0.05). In vivo studies showed that OA symptoms improved after administration of all MSCs. Also, PDGF-MSCs significantly improved limb function and reduced pain (P < 0.05). The results of the radiographic assessment and serum MMP-13 levels did not vary significantly compared to those of the control. Conclusions Genetically modifying PDGF and HO-1 in MSCs is an effective strategy for treating OA, suggesting that PDGF-MSCs can be novel therapeutic agents for improving OA symptoms

    Anticancer Efficacy of Cordyceps militaris

    Get PDF
    Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE) and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA) cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3β (p-GSK3β) and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3β-related caspase-3-dependent apoptosis

    Simulated microgravity with floating environment promotes migration of non-small cell lung cancers

    Get PDF
    A migration of cancer is one of the most important factors affecting cancer therapy. Particularly, a cancer migration study in a microgravity environment has gained attention as a tool for developing cancer therapy. In this study, we evaluated the proliferation and migration of two types (adenocarcinoma A549, squamous cell carcinoma H1703) of non-small cell lung cancers (NSCLC) in a floating environment with microgravity. When we measured proliferation of two NSCLCs in the microgravity (MG) and ground-gravity (CONT), although initial cell adhesion in MG was low, a normalized proliferation rate of A549 in MG was higher than that in CONT. Wound healing results of A549 and H1703 showed rapid recovery in MG; particularly, the migration rate of A549 was faster than that of H1703 both the normal and low proliferating conditions. Gene expression results showed that the microgravity accelerated the migration of NSCLC. Both A549 and H1703 in MG highly expressed the migration-related genes MMP-2, MMP-9, TIMP-1, and TIMP-2 compared to CONT at 24 h. Furthermore, analysis of MMP-2 protein synthesis revealed weaker metastatic performance of H1703 than that of A549. Therefore, the simulated microgravity based cancer culture environment will be a potential for migration and metastasis studies of lung cancers
    corecore