20 research outputs found
An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles
The extreme solar and SEP event of 20 January 2005 is analyzed from two
perspectives. Firstly, we study features of the main phase of the flare, when
the strongest emissions from microwaves up to 200 MeV gamma-rays were observed.
Secondly, we relate our results to a long-standing controversy on the origin of
SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs.
All emissions from microwaves up to 2.22 MeV line gamma-rays during the main
flare phase originated within a compact structure located just above sunspot
umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed,
indicating the presence of a large number of energetic electrons in strong
magnetic fields. Thus, protons and electrons responsible for flare emissions
during its main phase were accelerated within the magnetic field of the active
region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays
identified with pi^0-decay emission, are similar and correspond in time. The
origin of the pi^0-decay gamma-rays is argued to be the same as that of lower
energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600
km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from
the same active region. Hence, the flare itself rather than the CME appears to
determine the extreme nature of this event. We conclude that the acceleration,
at least, to sub-relativistic energies, of electrons and protons, responsible
for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are
likely to have occurred simultaneously within the flare region. We do not rule
out a probable contribution from particles accelerated in the CME-driven shock
for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo
corrected. The original publication is available at
http://www.springerlink.co
Recent Advances in Understanding Particle Acceleration Processes in Solar Flares
We review basic theoretical concepts in particle acceleration, with
particular emphasis on processes likely to occur in regions of magnetic
reconnection. Several new developments are discussed, including detailed
studies of reconnection in three-dimensional magnetic field configurations
(e.g., current sheets, collapsing traps, separatrix regions) and stochastic
acceleration in a turbulent environment. Fluid, test-particle, and
particle-in-cell approaches are used and results compared. While these studies
show considerable promise in accounting for the various observational
manifestations of solar flares, they are limited by a number of factors, mostly
relating to available computational power. Not the least of these issues is the
need to explicitly incorporate the electrodynamic feedback of the accelerated
particles themselves on the environment in which they are accelerated. A brief
prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Theoretical Research of Coal Gasification Products Burning in Boilers at Tomsk Thermal Power Plant-3
Mathematical modeling of primary fuel change into power gas in power generating boiler with productivity of steam 160 t\h was done. Research of aggregate work on some power modes was completed. Characteristic curves of efficiency coefficient at different loads and ratio on power and natural gases burning were made. Practicability of power gas use as fuel was proved
Theoretical Research of Coal Gasification Products Burning in Boilers at Tomsk Thermal Power Plant-3
Mathematical modeling of primary fuel change into power gas in power generating boiler with productivity of steam 160 t\h was done. Research of aggregate work on some power modes was completed. Characteristic curves of efficiency coefficient at different loads and ratio on power and natural gases burning were made. Practicability of power gas use as fuel was proved