26 research outputs found

    Changes in Imja Tsho in the Mount Everest Region of Nepal

    Get PDF
    Imja Tsho, located in the Sagarmatha ( Everest) National Park of Nepal, is one of the most studied and rapidly growing lakes in the Himalayan range. Compared with previous studies, the results of our sonar bathymetric survey conducted in September of 2012 suggest that its maximum depth has increased from 90.5 to 116.3 +/- 5.2 m since 2002, and that its estimated volume has grown from 35.8 +/- 0.7 to 61.7 +/- 3.7 million m(3). Most of the expansion of the lake in recent years has taken place in the glacier terminus-lake interface on the eastern end of the lake, with the glacier receding at about 52 m yr(-1) and the lake expanding in area by 0.04 km(2) yr(-1). A ground penetrating radar survey of the Imja-Lhotse Shar glacier just behind the glacier terminus shows that the ice is over 200 m thick in the center of the glacier. The volume of water that could be released from the lake in the event of a breach in the damming moraine on the western end of the lake has increased to 34.1 +/- 1.08 million m(3) from the 21 million m(3) estimated in 2002.USAID Climate Change Resilient Development (CCRD) projectFulbright FoundationNational Geographic SocietyCenter for Research in Water Resource

    Neptune to the Common-wealth of England (1652): the republican Britannia and the continuity of interests

    Get PDF
    In the seventeenth century, John Kerrigan reminds us, “models of empire did not always turn on monarchy”. In this essay, I trace a vision of “Neptune’s empire” shared by royalists and republicans, binding English national interest to British overseas expansion. I take as my text a poem entitled “Neptune to the Common-wealth of England”, prefixed to Marchamont Nedham’s 1652 English translation of Mare Clausum (1635), John Selden’s response to Mare Liberum (1609) by Hugo Grotius. This minor work is read alongside some equally obscure and more familiar texts in order to point up the ways in which it speaks to persistent cultural and political interests. I trace the afterlife of this verse, its critical reception and its unique status as a fragment that exemplifies the crossover between colonial republic and imperial monarchy at a crucial moment in British history, a moment that, with Brexit, remains resonant

    Predicting outflow induced by moraine failure in glacial lakes: the Lake Palcacocha case from an uncertainty perspective

    No full text
    Moraine dam collapse is one of the causes of glacial lake outburst floods. Available models seek to predict both moraine breach formation and lake outflow. The models depend on hydraulic, erosion, and geotechnical parameters that are mostly unknown or uncertain. This paper estimates the outflow hydrograph caused by a potential erosive collapse of the moraine dam of Lake Palcacocha in Peru and quantifies the uncertainty of the results. The overall aim is to provide a simple yet hydraulically robust approach for calculating the expected outflow hydrographs that is useful for risk assessment studies. To estimate the peak outflow and failure time of the hydrograph, we assessed several available empirical equations based on lake and moraine geometries; each equation has defined confidence intervals for peak flow predictions. Complete outflow hydrographs for each peak flow condition were modeled using a hydraulic simulation model calibrated to match the peak flows estimated with the empirical equations. Failure time and peak flow differences between the simulations, and the corresponding empirical equations were used as error parameters. Along with an expected hydrograph, lower and upper bound hydrographs were calculated for Lake Palcacocha, representing the confidence interval of the results. The approach has several advantages: first, it is simple and robust. Second, it evaluates the capability of empirical equations to reproduce the conditions of the lake and moraine dam. Third, this approach accounts for uncertainty in the hydrographs estimations, which makes it appropriate for risk management studies

    Assessing downstream flood impacts due to a potential GLOF from Imja Tsho in Nepal

    No full text
    Glacial-dominated areas pose unique challenges to downstream communities in adapting to recent and continuing global climate change, including increased threats of glacial lake outburst floods (GLOFs) that can increase risk due to flooding of downstream communities and cause substantial impacts on regional social, environmental and economic systems. The Imja glacial lake (or Imja Tsho) in Nepal, which has the potential to generate a GLOF, was studied using a two-dimensional debris-flow inundation model in order to evaluate the effectiveness of proposed measures to reduce possible flooding impacts to downstream communities by lowering the lake level. The results indicate that only minor flood impact reduction is achieved in the downstream community of Dingboche with modest (~3 m) lake lowering. Lowering the lake by 10 m shows a significant reduction in inundated area. However, lowering the lake by 20 m almost eliminates all flood impact at Dingboche. Further downstream at Phakding, the impact of the GLOF is significant and similar reductions in inundation are likely as a result of lake lowering

    Brief communication: An ice-debris avalanche in the Nupchu Valley, Kanchenjunga Conservation Area, eastern Nepal

    No full text
    <jats:p>Abstract. Beginning in December 2020, a series of small to medium, torrent-like pulses commenced upon a historic debris cone located within the Nupchu Valley, Kanchenjunga Conservation Area (KCA), Nepal. Sometime between 16 and 21 August 2022 a comparatively large ice-debris avalanche event occurred, covering an area of 0.6 km2 with a total estimated volume of order 106 m3. The area of the debris cone left by the August 2022 event increased the historic debris cone area by 0.2 km2 (total area 0.6 km2). Although no human or livestock deaths occurred, the increase in torrent-like pulses of debris upon this historic debris cone since 2020 exemplifies a style of mass movement that may become increasingly common as air temperatures rise in the region. Although the magnitude of this event was small compared to events like the 2021 Chamoli avalanche, the widespread distribution and frequency of comparable events present a substantial, and potentially increasing, hazard across High Mountain Asia. </jats:p&gt
    corecore