605 research outputs found
Historical roots of Agile methods: where did “Agile thinking” come from?
The appearance of Agile methods has been the most noticeable change to software process thinking in the last fifteen years [16], but in fact many of the “Agile ideas” have been around since 70’s or even before. Many studies and reviews have been conducted about Agile methods which ascribe their emergence as a reaction against traditional methods. In this paper, we argue that although Agile methods are new as a whole, they have strong roots in the history of software engineering. In addition to the iterative and incremental approaches that have been in use since 1957 [21], people who criticised the traditional methods suggested alternative approaches which were actually Agile ideas such as the response to change, customer involvement, and working software over documentation. The authors of this paper believe that education about the history of Agile thinking will help to develop better understanding as well as promoting the use of Agile methods. We therefore present and discuss the reasons behind the development and introduction of Agile methods, as a reaction to traditional methods, as a result of people's experience, and in particular focusing on reusing ideas from histor
Original observations of Desmozoon lepeophtherii, a microsporidian hyperparasite infecting the salmon louse Lepeophtheirus salmonis, and its subsequent detection by other researchers
A microsporidian hyperparasite, Desmozoon lepeophtherii, of the parasitic copepod Lepeophtheirus salmonis (salmon louse), infecting farmed Atlantic salmon (Salmo salar), was first discovered in the west of Scotland in 2000. Heavily infected salmon lice are easily recognised as they have large opaque inclusions distributed throughout the body. The prevalence of salmon lice with visible signs of microsporidiosis can be up to 10% of the population from certain farm sites. The microsporidian was also isolated from the host Atlantic salmon suggesting it may have a two host life cycle. The authors believe that the infection in immunocompetent salmon may be latent, becoming acute during periods of infection with another pathogen or during sexual maturation. Since its first discovery in Scotland, Desmozoon lepeophtherii has been subsequently reported from Norway, and more recently from the Pacific coast of North America
Ion-Collision Emission Excitation Cross Sections for Xenon Electric Thruster Plasmas
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76738/1/AIAA-33657-821.pd
A study of emotions in requirements engineering.
Proceedings of: 3rd World Summit on the Knowledge Society (WKKS 2010), September 22-24, 2010, Corfu (Greece)Requirements engineering (RE) is a crucial activity in software development projects. This phase in the software development cycle is knowledge intensive, and thus, human capital intensive. From the human point of view, emotions play an important role in behavior and can even act as behavioral motivators. Thus, if we consider that RE represents a set of knowledge-intensive tasks, which include acceptance and negotiation activities, then the emotional factor represents a key element in these issues. However, the emotional factor in RE has not received the attention it deserves. This paper aims to integrate the stakeholder’s emotions into the requirement process, proposing to catalogue them like any other factor in the process such as clarity or stability. Results show that high arousal and low pleasure levels are predictors of high versioning requirements.Publicad
Valorisation of rice husks using a TORBED® combustion process
World production of rice exceeds 750 million tonnes per year of which a fifth is removed in the form of rice husk during the milling process. The use of rice husks as a source of sustainable and renewable energy is often hindered by lack of capital and a poor understanding of rice husk combustion characteristics. This results in the selection of poor quality technology which generates significant quantities of harmful crystalline silica waste. Despite previous work in the area, detailed characterisation of the combustion of rice husk ash in a TORBED reactor across a wide temperature range has not yet been attempted and little effort has been directed towards assessing the economic viability of generating quality rice husk ashes. The use of a TORBED reactor enables low residual carbon after combustion without the generation of harmful crystalline material. Rice husk was combusted in a 400 mm reactor at temperatures between 700 and 950 °C. In the subsequent characterisation studies the resulting materials were shown to be fully amorphous high purity silica (> 95%) and were readily digested in a series of alkaline digestion experiments. Complete silica conversion was only possible using uneconomic Na₂O/SiO₂ ratios and further optimisation of the combustion process to generate higher surface area material is necessary to increase the digestion rates further. Provisional economic analysis suggests that sales of the by-product enhance the returns from rice husk based power generation. TORBED reactors enable the combustion of rice husk with considerable operating flexibility and they generate products that could be used to displace resource intensive products and processes thus, added value from the by-products can be obtained by using TORBED reactor technology
Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry
A new method to obtain trigonometry for the real spaces of constant curvature
and metric of any (even degenerate) signature is presented. The method
encapsulates trigonometry for all these spaces into a single basic
trigonometric group equation. This brings to its logical end the idea of an
absolute trigonometry, and provides equations which hold true for the nine
two-dimensional spaces of constant curvature and any signature. This family of
spaces includes both relativistic and non-relativistic homogeneous spacetimes;
therefore a complete discussion of trigonometry in the six de Sitter,
minkowskian, Newton--Hooke and galilean spacetimes follow as particular
instances of the general approach. Any equation previously known for the three
classical riemannian spaces also has a version for the remaining six
spacetimes; in most cases these equations are new. Distinctive traits of the
method are universality and self-duality: every equation is meaningful for the
nine spaces at once, and displays explicitly invariance under a duality
transformation relating the nine spaces. The derivation of the single basic
trigonometric equation at group level, its translation to a set of equations
(cosine, sine and dual cosine laws) and the natural apparition of angular and
lateral excesses, area and coarea are explicitly discussed in detail. The
exposition also aims to introduce the main ideas of this direct group
theoretical way to trigonometry, and may well provide a path to systematically
study trigonometry for any homogeneous symmetric space.Comment: 51 pages, LaTe
Co-creation of Value in IT Service Processes Using Semantic MediaWiki
Abstract: Enterprises are substituting their own IT-Systems by services provided by external providers. This provisioning of services may be done in an industrialized way, separating the service provider from the consumer. However, using industrialized services diminishes the capability to differentiate from competitors. To counter this, collaborative service processes based on the co-creation of value between service providers and prosumers are of huge importance. The approach presented shows how the co-creation of value in IT-service processes can profit from social software, using the example of the Semantic MediaWiki
Progress in Classical and Quantum Variational Principles
We review the development and practical uses of a generalized Maupertuis
least action principle in classical mechanics, in which the action is varied
under the constraint of fixed mean energy for the trial trajectory. The
original Maupertuis (Euler-Lagrange) principle constrains the energy at every
point along the trajectory. The generalized Maupertuis principle is equivalent
to Hamilton's principle. Reciprocal principles are also derived for both the
generalized Maupertuis and the Hamilton principles. The Reciprocal Maupertuis
Principle is the classical limit of Schr\"{o}dinger's variational principle of
wave mechanics, and is also very useful to solve practical problems in both
classical and semiclassical mechanics, in complete analogy with the quantum
Rayleigh-Ritz method. Classical, semiclassical and quantum variational
calculations are carried out for a number of systems, and the results are
compared. Pedagogical as well as research problems are used as examples, which
include nonconservative as well as relativistic systems
A research agenda for seed-trait functional ecology
Trait-based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life-history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically. Here we suggest broadening the range of morphological, physiological and biochemical seed traits to add new understanding on plant niches, population dynamics and community assembly. The diversity of seed traits and functions provides an important challenge that will require international collaboration in three areas of research. First, we present a conceptual framework for a seed ecological spectrum that builds upon current understanding of plant niches. We then lay the foundation for a seed-trait functional network, the establishment of which will underpin and facilitate trait-based inferences. Finally, we anticipate novel insights and challenges associated with incorporating diverse seed traits into predictive evolutionary ecology, community ecology and applied ecology. If the community invests in standardized seed-trait collection and the implementation of rigorous databases, major strides can be made at this exciting frontier of functional ecology
Disclinations, dislocations and continuous defects: a reappraisal
Disclinations, first observed in mesomorphic phases, are relevant to a number
of ill-ordered condensed matter media, with continuous symmetries or frustrated
order. They also appear in polycrystals at the edges of grain boundaries. They
are of limited interest in solid single crystals, where, owing to their large
elastic stresses, they mostly appear in close pairs of opposite signs. The
relaxation mechanisms associated with a disclination in its creation, motion,
change of shape, involve an interplay with continuous or quantized dislocations
and/or continuous disclinations. These are attached to the disclinations or are
akin to Nye's dislocation densities, well suited here. The notion of 'extended
Volterra process' takes these relaxation processes into account and covers
different situations where this interplay takes place. These concepts are
illustrated by applications in amorphous solids, mesomorphic phases and
frustrated media in their curved habit space. The powerful topological theory
of line defects only considers defects stable against relaxation processes
compatible with the structure considered. It can be seen as a simplified case
of the approach considered here, well suited for media of high plasticity
or/and complex structures. Topological stability cannot guarantee energetic
stability and sometimes cannot distinguish finer details of structure of
defects.Comment: 72 pages, 36 figure
- …