706 research outputs found
Systems development methods and usability in Norway: An industrial perspective
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2007 Springer Berlin HeidelbergThis paper investigates the relationship between traditional systems development methodologies and usability, through a survey of 78 Norwegian IT companies. Building on previous research we proposed two hypotheses; (1) that software companies will generally pay lip service to usability, but do not prioritize it in industrial projects, and (2) that systems development methods and usability are perceived as not being integrated. We find support for both hypotheses. Thus, the use of systems development methods is fairly stable, confirming earlier research. Most companies do not use a formal method, and of those who do, the majority use their own method. Generally, the use of methods is rather pragmatic: Companies that do not use formal methods report that they use elements from such methods. Further, companies that use their own method import elements from standardised methods into their own
Geometrical Ambiguity of Pair Statistics. I. Point Configurations
Point configurations have been widely used as model systems in condensed
matter physics, materials science and biology. Statistical descriptors such as
the -body distribution function is usually employed to characterize
the point configurations, among which the most extensively used is the pair
distribution function . An intriguing inverse problem of practical
importance that has been receiving considerable attention is the degree to
which a point configuration can be reconstructed from the pair distribution
function of a target configuration. Although it is known that the pair-distance
information contained in is in general insufficient to uniquely determine
a point configuration, this concept does not seem to be widely appreciated and
general claims of uniqueness of the reconstructions using pair information have
been made based on numerical studies. In this paper, we introduce the idea of
the distance space, called the space. The pair distances of a
specific point configuration are then represented by a single point in the
space. We derive the conditions on the pair distances that can be
associated with a point configuration, which are equivalent to the
realizability conditions of the pair distribution function . Moreover, we
derive the conditions on the pair distances that can be assembled into distinct
configurations. These conditions define a bounded region in the
space. By explicitly constructing a variety of degenerate point configurations
using the space, we show that pair information is indeed
insufficient to uniquely determine the configuration in general. We also
discuss several important problems in statistical physics based on the
space.Comment: 28 pages, 8 figure
Deforming the Maxwell-Sim Algebra
The Maxwell alegbra is a non-central extension of the Poincar\'e algebra, in
which the momentum generators no longer commute, but satisfy
. The charges commute with the momenta,
and transform tensorially under the action of the angular momentum generators.
If one constructs an action for a massive particle, invariant under these
symmetries, one finds that it satisfies the equations of motion of a charged
particle interacting with a constant electromagnetic field via the Lorentz
force. In this paper, we explore the analogous constructions where one starts
instead with the ISim subalgebra of Poincar\'e, this being the symmetry algebra
of Very Special Relativity. It admits an analogous non-central extension, and
we find that a particle action invariant under this Maxwell-Sim algebra again
describes a particle subject to the ordinary Lorentz force. One can also deform
the ISim algebra to DISim, where is a non-trivial dimensionless
parameter. We find that the motion described by an action invariant under the
corresponding Maxwell-DISim algebra is that of a particle interacting via a
Finslerian modification of the Lorentz force.Comment: Appendix on Lifshitz and Schrodinger algebras adde
Specification of a foxj1-dependent lineage in the forebrain is required for embryonic-to-postnatal transition of neurogenesis in the olfactory bulb
Establishment of a neural stem cell niche in the postnatal subependymal zone (SEZ) and the rostral migratory stream (RMS) is required for postnatal and adult neurogenesis in the olfactory bulbs (OB). We report the discovery of a cellular lineage in the SEZ-RMS-OB continuum, the specification of which is dependent on the expression of the forkhead transcription factor Foxj1 in mice. Spatially- and temporally- restricted Foxj1+ neuronal progenitors emerge during embryonic periods, surge during perinatal development, and are active only for the first few postnatal weeks. We show that the development of the unique Foxj1-derived lineage is dependent on Foxj1 expression, and is required for overall postnatal neurogenesis in the OB. Strikingly, the production of neurons from Foxj1+ progenitors significantly declines after the early postnatal weeks, but Foxj1-derived neurons in the OB persist during adult periods. Our study for the first time identifies the time-and region-specific activity of a perinatal progenitor domain that is required for transition and progression of OB neurogenesis from the embryonic-to-postnatal periods
Spherical Orbifolds for Cosmic Topology
Harmonic analysis is a tool to infer cosmic topology from the measured
astrophysical cosmic microwave background CMB radiation. For overall positive
curvature, Platonic spherical manifolds are candidates for this analysis. We
combine the specific point symmetry of the Platonic manifolds with their deck
transformations. This analysis in topology leads from manifolds to orbifolds.
We discuss the deck transformations of the orbifolds and give eigenmodes for
the harmonic analysis as linear combinations of Wigner polynomials on the
3-sphere. These provide new tools for detecting cosmic topology from the CMB
radiation.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1011.427
Black holes and a scalar field in an expanding universe
We consider a model of an inhomogeneous universe including a massless scalar
field, where the inhomogeneity is assumed to consist of many black holes. This
model can be constructed by following Lindquist and Wheeler, which has already
been investigated without including scalar field to show that an averaged scale
factor coincides with that of the Friedmann model. In this work we construct
the inhomogeneous universe with an massless scalar field, where we assume that
the averaged scale factor and scalar field are given by those of the Friedmann
model including a scalar field. All of our calculations are carried out in the
framework of Brans-Dicke gravity. In constructing the model of an inhomogeneous
universe, we define the mass of a black hole in the Brans-Dicke expanding
universe which is equivalent to ADM mass if the mass evolves adiabatically, and
obtain an equation relating our mass to the averaged scalar field and scale
factor. As the results we find that the mass has an adiabatic time dependence
in a sufficiently late stage of the expansion of the universe, and that the
time dependence is qualitatively diffenrent according to the sign of the
curvature of the universe: the mass increases decelerating in the closed
universe case, is constant in the flat case and decreases decelerating in the
open case. It is also noted that the mass in the Einstein frame depends on
time. Our results that the mass has a time dependence should be retained even
in the general scalar-tensor gravitiy with a scalar field potential.
Furthermore, we discuss the relation of our results to the uniqueness theorem
of black hole spacetime and gravitational memory effect.Comment: 16 pages, 3 tables, 5 figure
Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry
A new method to obtain trigonometry for the real spaces of constant curvature
and metric of any (even degenerate) signature is presented. The method
encapsulates trigonometry for all these spaces into a single basic
trigonometric group equation. This brings to its logical end the idea of an
absolute trigonometry, and provides equations which hold true for the nine
two-dimensional spaces of constant curvature and any signature. This family of
spaces includes both relativistic and non-relativistic homogeneous spacetimes;
therefore a complete discussion of trigonometry in the six de Sitter,
minkowskian, Newton--Hooke and galilean spacetimes follow as particular
instances of the general approach. Any equation previously known for the three
classical riemannian spaces also has a version for the remaining six
spacetimes; in most cases these equations are new. Distinctive traits of the
method are universality and self-duality: every equation is meaningful for the
nine spaces at once, and displays explicitly invariance under a duality
transformation relating the nine spaces. The derivation of the single basic
trigonometric equation at group level, its translation to a set of equations
(cosine, sine and dual cosine laws) and the natural apparition of angular and
lateral excesses, area and coarea are explicitly discussed in detail. The
exposition also aims to introduce the main ideas of this direct group
theoretical way to trigonometry, and may well provide a path to systematically
study trigonometry for any homogeneous symmetric space.Comment: 51 pages, LaTe
Data protection risk modeling into business process analysis
We present a novel way to link business process model with data protection risk management. We use established body of knowledge regarding risk manager concepts and business process towards data protections. We try to contribute to the problems that today organizations should find a suitable data protection model that could be used in as a risk framework. The purpose of this document is to define a model to describe data protection in the context of risk. Our approach including the identification of the main concepts of data
protection according to the scope of the with EU directive data protection regulation. We outline data protection model as a continuous way of protection valued organization information regarding personal identifiable information. Data protection encompass the preservation of personal data information from unauthorized access, use, modification, recording or destruction. Since this kind of service is offered in a continuous way, it is
important to stablish a way to measure the effectiveness of awareness of data subject discloses regrading personal identifiable information.info:eu-repo/semantics/publishedVersio
Formal modelling as a component of user centred design
User centred design approaches typically focus understanding on context and producing sketch designs. These sketches are often non functional (e.g., paper) prototypes. They provide a means of exploring candidate design possibilities using techniques such as cooperative evaluation. This paper describes a further step in the process using formal analysis techniques. The sketch design of a device is enhanced into a specification that is then analysed using formal techniques, thus providing a systematic approach to checking plausibility and consistency during early design stages. Once analysed, a further prototype is constructed using an executable form of the specification, providing the next candidate for evaluation with potential users. The technique is illustrated through an example based on a pill dispenser.We are grateful to Nuno Rodrigues, João Vilaça and Nuno Dias from IPCA (Polytechnic Institute of Cavado and Ave) who developed the first prototypeof the pill dispenser. José C. Campos, Paolo Masci and Michael Harrison werefunded by project NORTE-01-0145-FEDER-000016, financed by the North Por-tugal Regional Operational Programme (NORTE 2020), under the PORTUGAL2020 Partnership Agreement, and through the European Regional DevelopmentFund (ERDF)
- …