2 research outputs found

    A Combinatorial Single-cell Approach to Characterize the Molecular and Immunophenotypic Heterogeneity of Human Stem and Progenitor Populations

    No full text
    Immunophenotypic characterization and molecular analysis have long been used to delineate heterogeneity and define distinct cell populations. FACS is inherently a single-cell assay, however prior to molecular analysis, the target cells are often prospectively isolated in bulk, thereby losing single-cell resolution. Single-cell gene expression analysis provides a means to understand molecular differences between individual cells in heterogeneous cell populations. In bulk cell analysis an overrepresentation of a distinct cell type results in biases and occlusions of signals from rare cells with biological importance. By utilizing FACS index sorting coupled to single-cell gene expression analysis, populations can be investigated without the loss of single-cell resolution while cells with intermediate cell surface marker expression are also captured, enabling evaluation of the relevance of continuous surface marker expression. Here, we describe an approach that combines single-cell reverse transcription quantitative PCR (RT-qPCR) and FACS index sorting to simultaneously characterize the molecular and immunophenotypic heterogeneity within cell populations. In contrast to single-cell RNA sequencing methods, the use of qPCR with specific target amplification allows for robust measurements of low-abundance transcripts with fewer dropouts, while it is not confounded by issues related to cell-to-cell variations in read depth. Moreover, by directly index-sorting single-cells into lysis buffer this method, allows for cDNA synthesis and specific target pre-amplification to be performed in one step as well as for correlation of subsequently derived molecular signatures with cell surface marker expression. The described approach has been developed to investigate hematopoietic single-cells, but have also been used successfully on other cell types. In conclusion, the approach described herein allows for sensitive measurement of mRNA expression for a panel of pre-selected genes with the possibility to develop protocols for subsequent prospective isolation of molecularly distinct subpopulations

    Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion

    Get PDF
    Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC) development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs). We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM) can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development
    corecore