30 research outputs found

    Fabrication and testing of optics for EUV projection lithography

    Get PDF
    Extreme Ultraviolet Lithography (EUVL) is a leading candidate as a stepper technology for fabricating the next generation of microelectronic circuits. EUVL is an optical printing technique qualitatively similar to Deep UV Lithography (DUVL), except that 11-13nm wavelength light is used instead of 193-248nm. The feasibility of creating 0.1µm features has been well-established using small- field EUVL printing tools, and development efforts are currently underway to demonstrate that cost- effective production equipment can be engineered to perform full-width ring-field imaging consistent with high wafer throughput rates. Ensuring that an industrial supplier base will be available for key components and subsystems is crucial to the success of EUVL. In particular, the projection optics are the heart of the EUVL imaging system, yet they have figure and finish specifications that are beyond the state-of-the-art in optics manufacturing. Thus it is important to demonstrate that industry will be able to fabricate and certify these optics commensurate with EUVL requirements. The goal of this paper is to demonstrate that procuring EUVL projection optical substrates is feasible

    Calibration of symmetric and non-symmetric errors for interferometry of ultra-precise imaging systems

    Get PDF
    The azimuthal Zernike coefficients for shells of Zernike functions with shell numbers n<N may be determined by making measurements at N equally spaced rotational positions. However, these measurements do not determine the coefficients of any of the purely radial Zernike functions. Label the circle that the azimuthal Zernikes are measured in as circle A. Suppose that the azimuthal Zernike coefficients for n<N are also measured in a smaller circle B which is inside circle A but offset so that it is tangent to circle A and so that it has the center of circle A just inside its circular boundary. The diameter of circle B is thus only slightly larger than half the diameter of circle A. From these two sets of measurements, all the Zernike coefficients may be determined for n<N. However, there are usually unknown small rigid body motions of the optic between measurements. Then all the Zernike coefficients for n<N except for piston, tilts, and focus may be determined. We describe the exact mathematical algorithm that does this and describe an interferometer which measures the complete wavefront from pinholes in pinhole aligners. These pinhole aligners are self-contained units which include a fiber optic, focusing optics, and a 'pinhole mirror'. These pinhole aligners can then be used in another interferometer so that its errors would then be known. Physically, the measurements in circles A and B are accomplished by rotating each pinhole aligner about an aligned axis, then about an oblique axis. Absolute measurement accuracies better than 0.2 nm were achieved

    Construction and testing of wavefront reference sources for interferometry of ultra-precise imaging systems

    Get PDF
    We have built and calibrated a set of 532-nm wavelength wavefront reference sources that fill a numerical aperture of 0.3. Early data show that they have a measured departure from sphericity of less than 0.2 nm RMS (0.4 milliwaves) and a reproducibility of better than 0.05 nm rms. These devices are compact, portable, fiber-fed, and are intended as sources of measurement and reference waves in wavefront measuring interferometers used for metrology of EUVL optical elements and systems. Keys to wave front accuracy include fabrication of an 800-nm pinhole in a smooth reflecting surface as well as a calibration procedure capable of measuring axisymmetric and non-axisymmetric errors

    First lithographic results from the extreme ultraviolet Engineering Test Stand

    Get PDF
    The extreme ultraviolet Í‘EUVÍ’ Engineering Test Stand Í‘ETSÍ’ is a step-and-scan lithography tool that operates at a wavelength of 13.4 nm. It has been developed to demonstrate full-field EUV imaging and acquire system learning for equipment manufacturers to develop commercial tools. The initial integration of the tool is being carried out using a developmental set of projection optics, while a second, higher-quality, projection optics is being assembled and characterized in a parallel effort. We present here the first lithographic results from the ETS, which include both static and scanned resist images of 100 nm dense and isolated features throughout the ring field of the projection optics. Accurate lithographic models have been developed and compared with the experimental results
    corecore