761 research outputs found

    Shape-independent scaling of excitonic confinement in realistic quantum wires

    Get PDF
    The scaling of exciton binding energy in semiconductor quantum wires is investigated theoretically through a non-variational, fully three-dimensional approach for a wide set of realistic state-of-the-art structures. We find that in the strong confinement limit the same potential-to-kinetic energy ratio holds for quite different wire cross-sections and compositions. As a consequence, a universal (shape- and composition-independent) parameter can be identified that governs the scaling of the binding energy with size. Previous indications that the shape of the wire cross-section may have important effects on exciton binding are discussed in the light of the present results.Comment: To appear in Phys. Rev. Lett. (12 pages + 2 figures in postscript

    Conceptual Design of a Fast-Ignition Laser Fusion Reactor FALCON-D

    Get PDF
    A new conceptual design of the laser fusion power plant FALCON-D (Fast ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast ignition method can achieve the sufficient fusion gain for a commercial operation (~100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5~6m radius). 1-D/2-D hydrodynamic simulations showed the possibility of the sufficient gain achievement with a 40 MJ target yield. The design feasibility of the compact dry wall chamber and solid breeder blanket system was shown through the thermomecanical analysis of the dry wall and neutronics analysis of the blanket system. A moderate electric output (~400MWe) can be achieved with a high repetition (30Hz) laser. This dry wall concept not only reduces some difficulties accompanied with a liquid wall but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance time. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R&D issues required for this design are also discussed

    Suzaku X-Ray Imaging and Spectroscopy of Cassiopeia A

    Full text link
    Suzaku X-ray observations of a young supernova remnant, Cassiopeia A, were carried out. K-shell transition lines from highly ionized ions of various elements were detected, including Chromium (Cr-Kalpha at 5.61 keV). The X-ray continuum spectra were modeled in the 3.4--40 keV band, summed over the entire remnant, and were fitted with a simplest combination of the thermal bremsstrahlung and the non-thermal cut-off power-law models. The spectral fits with this assumption indicate that the continuum emission is likely to be dominated by the non-thermal emission with a cut-off energy at > 1 keV. The thermal-to-nonthermal fraction of the continuum flux in the 4-10 keV band is best estimated as ~0.1. Non-thermal-dominated continuum images in the 4--14 keV band were made. The peak of the non-thermal X-rays appears at the western part. The peak position of the TeV gamma-rays measured with HEGRA and MAGIC is also shifted at the western part with the 1-sigma confidence. Since the location of the X-ray continuum emission was known to be presumably identified with the reverse shock region, the possible keV-TeV correlations give a hint that the accelerated multi-TeV hadrons in Cassiopeia A are dominated by heavy elements in the reverse shock region.Comment: Publ. Astron. Soc. Japan 61, pp.1217-1228 (2009

    Excitons in T-shaped quantum wires

    Full text link
    We calculate energies, oscillator strengths for radiative recombination, and two-particle wave functions for the ground state exciton and around 100 excited states in a T-shaped quantum wire. We include the single-particle potential and the Coulomb interaction between the electron and hole on an equal footing, and perform exact diagonalisation of the two-particle problem within a finite basis set. We calculate spectra for all of the experimentally studied cases of T-shaped wires including symmetric and asymmetric GaAs/Alx_{x}Ga1−x_{1-x}As and Iny_{y}Ga1−y_{1-y}As/Alx_{x}Ga1−x_{1-x}As structures. We study in detail the shape of the wave functions to gain insight into the nature of the various states for selected symmetric and asymmetric wires in which laser emission has been experimentally observed. We also calculate the binding energy of the ground state exciton and the confinement energy of the 1D quantum-wire-exciton state with respect to the 2D quantum-well exciton for a wide range of structures, varying the well width and the Al molar fraction xx. We find that the largest binding energy of any wire constructed to date is 16.5 meV. We also notice that in asymmetric structures, the confinement energy is enhanced with respect to the symmetric forms with comparable parameters but the binding energy of the exciton is then lower than in the symmetric structures. For GaAs/Alx_{x}Ga1−x_{1-x}As wires we obtain an upper limit for the binding energy of around 25 meV in a 10 {\AA} wide GaAs/AlAs structure which suggests that other materials must be explored in order to achieve room temperature applications. There are some indications that Iny_{y}Ga1−y_{1-y}As/Alx_{x}Ga1−x_{1-x}As might be a good candidate.Comment: 20 pages, 10 figures, uses RevTeX and psfig, submitted to Physical Review

    Power exhaust concepts and divertor designs for Japanese and European DEMO fusion reactors

    Get PDF
    Concepts of the power exhaust and divertor design have been developed, with a high priority in the pre-conceptual design phase of the Japan-Europe broader approach DEMO design activity (BA DDA). Common critical issues are the large power exhaust and its fraction in the main plasma and divertor by the radiative cooling (P radtot/P heat 0.8). Different exhaust concepts in the main plasma and divertor have been developed for Japanese (JA) and European (EU) DEMOs. JA proposed a conventional closed divertor geometry to challenge large P sep/R p handling of 30-35 MW m-1 in order to maintain the radiation fraction in the main plasma at the ITER-level (f radmain = P radmain/P heat ∼ 0.4) and higher plasma performance. EU challenged both increasing f radmain to ∼0.65 and handling the ITER-level P sep/R p in the open divertor geometry. Power exhaust simulations have been performed by SONIC (JA) and SOLPS5.1 (EU) with corresponding P sep = 250-300 MW and 150-200 MW, respectively. Both results showed that large divertor radiation fraction (P raddiv/P sep 0.8) was required to reduce both peak q target (10 MW m-2) and T e,idiv. In addition, the JA divertor performance with EU-reference P sep of 150 MW showed benefit of the closed geometry to reduce the peak q target and T e,idiv near the separatrix, and to produce the partial detachment. Integrated designs of the water cooled divertor target, cassette and coolant pipe routing have been developed in both EU and JA, based on the tungsten (W) monoblock concept with Cu-alloy pipe. For year-long operation, DEMO-specific risks such as radiation embrittlement of Cu-interlayers and Cu-alloy cooling pipe were recognized, and both foresee higher water temperature (130 °C-200 °C) compared to that for ITER. At the same time, several improved technologies of high heat flux components have been developed in EU, and different heat sink design, i.e. Cu-alloy cooling pipes for targets and RAFM steel ones for the baffle, dome and cassette, was proposed in JA. The two approaches provide important case-studies of the DEMO divertor, and will significantly contribute to both DEMO designs

    Gain in a quantum wire laser of high uniformity

    Full text link
    A multi-quantum wire laser operating in the 1-D ground state has been achieved in a very high uniformity structure that shows free exciton emission with unprecedented narrow width and low lasing threshold. Under optical pumping the spontaneous emission evolves from a sharp free exciton peak to a red-shifted broad band. The lasing photon energy occurs about 5 meV below the free exciton. The observed shift excludes free excitons in lasing and our results show that Coulomb interactions in the 1-D electron-hole system shift the spontaneous emission and play significant roles in laser gain.Comment: 4 pages, 4 figures, prepared by RevTe
    • …
    corecore