17 research outputs found
Genetic analysis of local Vietnamese chickens provides evidence of gene flow from wild to domestic populations
<p>Abstract</p> <p>Background</p> <p>Previous studies suggested that multiple domestication events in South and South-East Asia (Yunnan and surrounding areas) and India have led to the genesis of modern domestic chickens. Ha Giang province is a northern Vietnamese region, where local chickens, such as the H'mong breed, and wild junglefowl coexist. The assumption was made that hybridisation between wild junglefowl and Ha Giang chickens may have occurred and led to the high genetic diversity previously observed. The objectives of this study were i) to clarify the genetic structure of the chicken population within the Ha Giang province and ii) to give evidence of admixture with <it>G. gallus</it>. A large survey of the molecular polymorphism for 18 microsatellite markers was conducted on 1082 chickens from 30 communes of the Ha Giang province (HG chickens). This dataset was combined with a previous dataset of Asian breeds, commercial lines and samples of Red junglefowl from Thailand and Vietnam (Ha NoĂŻ). Measurements of genetic diversity were estimated both within-population and between populations, and a step-by-step Bayesian approach was performed on the global data set.</p> <p>Results</p> <p>The highest value for expected heterozygosity (> 0.60) was found in HG chickens and in the wild junglefowl populations from Thailand. HG chickens exhibited the highest allelic richness (mean A = 2.9). No significant genetic subdivisions of the chicken population within the Ha Giang province were found. As compared to other breeds, HG chickens clustered with wild populations. Furthermore, the neighbornet tree and the Bayesian clustering analysis showed that chickens from 4 communes were closely related to the wild ones and showed an admixture pattern.</p> <p>Conclusion</p> <p>In the absence of any population structuring within the province, the H'mong chicken, identified from its black phenotype, shared a common gene pool with other chickens from the Ha Giang population. The large number of alleles shared exclusively between Ha Giang chickens and junglefowl, as well as the results of a Bayesian clustering analysis, suggest that gene flow has been taking place from junglefowl to Ha Giang chickens.</p
Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens
Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r(2)â©Ÿ0.3) in both traditional and village chickens at pairwise marker distances of âŒ10âKb; while haplotype block analysis indicates a median block size of 11â12âKb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55â38.89âMb) and rose comb (Gga 7:18.41â22.09âMb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25â67.28âMb, Gga 1:67.28â67.32âMb) totalling âŒ75âKb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions