191 research outputs found
The impact of broadband in schools
The report reviews evidence for the impact of broadband in English schools, exploring; Variations in provision in level of broadband connectivity; Links between the level of broadband activity and nationally accessible performance data; Aspects of broadband connectivity and the school environment that contribute to better outcomes for pupils and teachers; Academic and motivational benefits associated with educational uses of this technology
Generalized Random Gilbert-Varshamov Codes
© 1963-2012 IEEE. We introduce a random coding technique for transmission over discrete memoryless channels, reminiscent of the basic construction attaining the Gilbert-Varshamov bound for codes in Hamming spaces. The code construction is based on drawing codewords recursively from a fixed type class, in such a way that a newly generated codeword must be at a certain minimum distance from all previously chosen codewords, according to some generic distance function. We derive an achievable error exponent for this construction and prove its tightness with respect to the ensemble average. We show that the exponent recovers the Csiszår and Körner exponent as a special case, which is known to be at least as high as both the random-coding and expurgated exponents, and we establish the optimality of certain choices of the distance function. In addition, for additive distances and decoding metrics, we present an equivalent dual expression, along with a generalization to infinite alphabets via cost-constrained random coding.ER
Information-Theoretic Foundations of Mismatched Decoding
Shannon's channel coding theorem characterizes the maximal rate of
information that can be reliably transmitted over a communication channel when
optimal encoding and decoding strategies are used. In many scenarios, however,
practical considerations such as channel uncertainty and implementation
constraints rule out the use of an optimal decoder. The mismatched decoding
problem addresses such scenarios by considering the case that the decoder
cannot be optimized, but is instead fixed as part of the problem statement.
This problem is not only of direct interest in its own right, but also has
close connections with other long-standing theoretical problems in information
theory. In this monograph, we survey both classical literature and recent
developments on the mismatched decoding problem, with an emphasis on achievable
random-coding rates for memoryless channels. We present two widely-considered
achievable rates known as the generalized mutual information (GMI) and the LM
rate, and overview their derivations and properties. In addition, we survey
several improved rates via multi-user coding techniques, as well as recent
developments and challenges in establishing upper bounds on the mismatch
capacity, and an analogous mismatched encoding problem in rate-distortion
theory. Throughout the monograph, we highlight a variety of applications and
connections with other prominent information theory problems.Comment: Published in Foundations and Trends in Communications and Information
Theory (Volume 17, Issue 2-3
Recommended from our members
Information-Theoretic Foundations of Mismatched Decoding
Shannonâs channel coding theorem characterizes the maximal rate of information that can be reliably transmitted over a communication channel when optimal encoding and decoding strategies are used. In many scenarios, however, practical considerations such as channel uncertainty and implementation constraints rule out the use of an optimal decoder. The mismatched decoding problem addresses such scenarios by considering the case that the decoder cannot be optimized, but is instead fixed as part of the problem statement. This problem is not only of direct interest in its own right, but also has close connections with other long-standing theoretical problems in information theory.
In this monograph, we survey both classical literature and recent developments on the mismatched decoding problem, with an emphasis on achievable random-coding rates for memoryless channels. We present two widely-considered achievable rates known as the generalized mutual information (GMI) and the LM rate, and overview their derivations and properties. In addition, we survey several improved rates via multi-user coding techniques, as well as recent developments and challenges in establishing upper bounds on the mismatch capacity, and an analogous mismatched encoding problem in rate-distortion theory. Throughout the monograph, we highlight a variety of applications and connections with other prominent information theory problems
A Counter-Example to the Mismatched Decoding Converse for Binary-Input Discrete Memoryless Channels
This paper studies the mismatched decoding problem for binary-input discrete
memoryless channels. An example is provided for which an achievable rate based
on superposition coding exceeds the LM rate (Hui, 1983; Csisz\'ar-K\"orner,
1981), thus providing a counter-example to a previously reported converse
result (Balakirsky, 1995). Both numerical evaluations and theoretical results
are used in establishing this claim.Comment: Extended version of paper accepted to IEEE Transactions on
Information Theory; rate derivation and numerical algorithms included in
appendice
Pertussis infection in fully vaccinated children in day-care centers, Israel.
We tested 46 fully vaccinated children in two day-care centers in Israel who were exposed to a fatal case of pertussis infection. Only two of five children who tested positive for Bordetella pertussis met the World Health Organization's case definition for pertussis. Vaccinated children may be asymptomatic reservoirs for infection
Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response
© 2019, The Author(s). Molecular mechanisms driving disease course and response to therapy in ulcerative colitis (UC) are not well understood. Here, we use RNAseq to define pre-treatment rectal gene expression, and fecal microbiota profiles, in 206 pediatric UC patients receiving standardised therapy. We validate our key findings in adult and paediatric UC cohorts of 408 participants. We observe a marked suppression of mitochondrial genes and function across cohorts in active UC, and that increasing disease severity is notable for enrichment of adenoma/adenocarcinoma and innate immune genes. A subset of severity genes improves prediction of corticosteroid-induced remission in the discovery cohort; this gene signature is also associated with response to anti-TNFα and anti-α 4 ÎČ 7 integrin in adults. The severity and therapeutic response gene signatures were in turn associated with shifts in microbes previously implicated in mucosal homeostasis. Our data provide insights into UC pathogenesis, and may prioritise future therapies for nonresponders to current approaches
The purpose of mess in action research: building rigour though a messy turn
Mess and rigour might appear to be strange bedfellows. This paper argues that the purpose of mess is to facilitate a turn towards new constructions of knowing that lead to transformation in practice (an action turn). Engaging in action research - research that can disturb both individual and communally held notions of knowledge for practice - will be messy. Investigations into the 'messy area', the interface between the known and the nearly known, between knowledge in use and tacit knowledge as yet to be useful, reveal the 'messy area' as a vital element for seeing, disrupting, analysing, learning, knowing and changing. It is the place where long-held views shaped by professional knowledge, practical judgement, experience and intuition are seen through other lenses. It is here that reframing takes place and new knowing, which has both theoretical and practical significance, arises: a 'messy turn' takes place
Comparison of Zn_{1-x}Mn_xTe/ZnTe multiple-quantum wells and quantum dots by below-bandgap photomodulated reflectivity
Large-area high density patterns of quantum dots with a diameter of 200 nm
have been prepared from a series of four Zn_{0.93}Mn_{0.07}Te/ZnTe multiple
quantum well structures of different well width (4 nm, 6 nm, 8 nm and 10 nm) by
electron beam lithography followed by Ar+ ion beam etching. Below-bandgap
photomodulated reflectivity spectra of the quantum dot samples and the parent
heterostructures were then recorded at 10 K and the spectra were fitted to
extract the linewidths and the energy positions of the excitonic transitions in
each sample. The fitted results are compared to calculations of the transition
energies in which the different strain states in the samples are taken into
account. We show that the main effect of the nanofabrication process is a
change in the strain state of the quantum dot samples compared to the parent
heterostructures. The quantum dot pillars turn out to be freestanding, whereas
the heterostructures are in a good approximation strained to the ZnTe lattice
constant. The lateral size of the dots is such that extra confinement effects
are not expected or observed.Comment: 23 pages, LaTeX2e (amsmath, epsfig), 7 EPS figure
- âŠ