16 research outputs found

    Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I : theoretical formulation and model validation

    Get PDF
    This paper is first of the two papers dealingwith analytical investigation of resonant multimodal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables. Part I deals with theoretical formulation and validation of the general cable model. Approximate nonlinear partial differential equations of 3-D coupled motion of small sagged cables - which account for both spatio-temporal variation of nonlinear dynamic tension and system asymmetry due to inclined sagged configurations - are presented. A multidimensional Galerkin expansion of the solution ofnonplanar/planar motion is performed, yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically studying the behavior of horizontal/inclined cables in Part II [25], a second-order asymptotic analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On accounting for higher-order effectsof quadratic/cubic nonlinearities, approximate closed form solutions of nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear normal modes reveal the dependence of cable response on resonant/nonresonant modal contributions. Depending on simplifying kinematic modeling and assigned system parameters, approximate horizontal/inclined cable models are thoroughly validated by numerically evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are discussed for horizontal cables, showing some meaningful effects due to kinematic condensation

    āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļāļēāļĢāļ”āļąāļ”āļ‚āļ­āļ‡āđāļœāđˆāļ™āļžāļ·āđ‰āļ™āļŦāļ™āļēāļ—āļĩāđˆāļ§āļēāļ‡āļšāļ™āļāļēāļ™āļĢāļēāļāļĒāļ·āļ”āļŦāļĒāļļāđˆāļ™āļŦāļĨāļēāļĒāļŠāļąāđ‰āļ™āđ‚āļ”āļĒāļ§āļīāļ˜āļĩāļšāļēāļ§āļ”āļēāļĢāļĩāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒBending Analysis of Thick Plates on a Multi-Layered Elastic Foundation by Boundary Element Method

    No full text
    āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āđ€āļŠāļ™āļ­āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ›āļąāļāļŦāļēāđāļœāđˆāļ™āļžāļ·āđ‰āļ™āļŦāļ™āļēāļ‚āļ­āļ‡āļĄāļīāļ™āļ”āđŒāļĨāļīāļ™āļ§āļēāļ‡āļšāļ™āļāļēāļ™āļĢāļēāļāļĒāļ·āļ”āļŦāļĒāļļāđˆāļ™āļŦāļĨāļēāļĒāļŠāļąāđ‰āļ™āđ‚āļ”āļĒāļ§āļīāļ˜āļĩāļšāļēāļ§āļ”āļēāļĢāļĩāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒ (BEM) āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ›āļąāļāļŦāļēāļˆāļ°āđƒāļŠāđ‰āļŦāļĨāļąāļāļāļēāļĢāļ‚āļ­āļ‡āļŠāļĄāļāļēāļĢāđāļ­āļ™āļ°āļĨāđ‡āļ­āļ āļ•āļēāļĄāđāļ™āļ§āļ„āļīāļ”āļ™āļĩāđ‰ āļŠāļĄāļāļēāļĢāđ€āļŠāļīāļ‡āļ­āļ™āļļāļžāļąāļ™āļ˜āđŒāļ‚āļ­āļ‡āļ›āļąāļāļŦāļēāđ€āļ”āļīāļĄāļˆāļ°āļ–āļđāļāđāļ—āļ™āļ—āļĩāđˆāļ”āđ‰āļ§āļĒāļŠāļĄāļāļēāļĢāļ›āļąāļ§āļ‹āļ‡āļ—āļĩāđˆāļ–āļđāļāļāļĢāļ°āļ—āļģāđ‚āļ”āļĒāđāļŦāļĨāđˆāļ‡āļāļģāđ€āļ™āļīāļ”āļŠāļĄāļĄāļ•āļī āđāļĨāļ°āļĒāļąāļ‡āļ„āļ‡āđƒāļŠāđ‰āđ€āļ‡āļ·āđˆāļ­āļ™āđ„āļ‚āļ—āļĩāđˆāļ‚āļ­āļšāđ€āļ‚āļ•āđ€āļ”āļīāļĄ āļˆāļēāļāļ™āļąāđ‰āļ™āļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļšāļēāļ§āļ”āļēāļĢāļĩāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒāđ€āļžāļ·āđˆāļ­āļŠāļĢāđ‰āļēāļ‡āļŠāļĄāļāļēāļĢāļ›āļĢāļīāļžāļąāļ™āļ˜āđŒāļ‚āļ­āļ‡āļœāļĨāđ€āļ‰āļĨāļĒ āđāļĨāļ°āļ›āļĢāļ°āļĄāļēāļ“āļ„āđˆāļēāđāļŦāļĨāđˆāļ‡āļāļģāđ€āļ™āļīāļ”āļŠāļĄāļĄāļ•āļīāļ”āđ‰āļ§āļĒāļ­āļ™āļļāļāļĢāļĄāđ€āļĢāđ€āļ”āļĩāļĒāļĨāđ€āļšāļŠāļīāļŠāļŸāļąāļ‡āļāđŒāļŠāļąāļ™ āđƒāļ™āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āđ€āļĢāđ€āļ”āļĩāļĒāļĨāđ€āļšāļŠāļīāļŠāļŸāļąāļ‡āļāđŒāļŠāļąāļ™āļ—āļĩāđˆāđƒāļŠāđ‰ āļ„āļ·āļ­ Thin Plate Splines; TPS āļ‚āļ“āļ°āļ—āļĩāđˆāđ€āļ—āļ­āļĄāđ‚āļ”āđ€āļĄāļ™āļ­āļīāļ™āļ—āļīāļāļĢāļąāļĨāļˆāļ°āļ–āļđāļāđāļ›āļĨāļ‡āđƒāļŦāđ‰āđ€āļ›āđ‡āļ™āļ­āļīāļ™āļ—āļīāļāļĢāļąāļĨāļ—āļĩāđˆāļ‚āļ­āļšāđ€āļ‚āļ•āđ‚āļ”āļĒāļ­āļēāļĻāļąāļĒāđ€āļ—āļ„āļ™āļīāļ„āļ‚āļ­āļ‡āļ§āļīāļ˜āļĩāļšāļēāļ§āļ”āļēāļĢāļĩāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒ āļœāļĨāđ€āļ‰āļĨāļĒāļ‚āļ­āļ‡āļ›āļąāļāļŦāļēāļˆāļķāļ‡āļŦāļēāđ„āļ”āđ‰āļˆāļēāļāļŠāļĄāļāļēāļĢāļ­āļīāļ™āļ—āļīāļāļĢāļąāļĨāļ—āļĩāđˆāļ‚āļ­āļšāđ€āļ‚āļ•āļ‹āļķāđˆāļ‡āļˆāļ°āļĄāļĩāļāļēāļĢāđāļšāđˆāļ‡āđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒāđ€āļ‰āļžāļēāļ°āļ—āļĩāđˆāļ‚āļ­āļšāđ€āļ‚āļ•āļ‚āļ­āļ‡āļ›āļąāļāļŦāļēāđ€āļ—āđˆāļēāļ™āļąāđ‰āļ™ āļˆāļēāļāļāļēāļĢāļĻāļķāļāļĐāļēāļŠāļēāļĄāļēāļĢāļ–āļŠāļĢāļļāļ›āļ›āļĢāļ°āđ€āļ”āđ‡āļ™āļŠāļģāļ„āļąāļāđ„āļ”āđ‰āļ”āļąāļ‡āļ™āļĩāđ‰ 1) āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđāļœāđˆāļ™āļžāļ·āđ‰āļ™āđ‚āļ”āļĒāļ§āļīāļ˜āļĩāļšāļēāļ§āļ”āļēāļĢāļĩāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒāļĄāļĩāļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģāļ”āļĩāđ€āļĒāļĩāđˆāļĒāļĄāđ€āļĄāļ·āđˆāļ­āđ€āļ—āļĩāļĒāļšāļāļąāļšāļ§āļīāļ˜āļĩāđ€āļŠāļīāļ‡āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ 2) āđ€āļ‡āļ·āđˆāļ­āļ™āđ„āļ‚āļ—āļĩāđˆāļĢāļ­āļ‡āļĢāļąāļšāļŠāđˆāļ‡āļœāļĨāđ‚āļ”āļĒāļ•āļĢāļ‡āļāļąāļšāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡āđāļœāđˆāļ™āļžāļ·āđ‰āļ™āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļ„āđˆāļēāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āļ‚āļ­āļ‡āļ—āļĩāđˆāļĢāļ­āļ‡āļĢāļąāļšāļ—āļĩāđˆāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™ 3) āļˆāļģāļ™āļ§āļ™āļŠāļąāđ‰āļ™āļ‚āļ­āļ‡āļāļēāļ™āļĢāļēāļāļĒāļ·āļ”āļŦāļĒāļļāđˆāļ™āļĄāļĩāļ­āļīāļ—āļ˜āļīāļžāļĨāļ•āđˆāļ­āļœāļĨāļāļēāļĢāļ„āļģāļ™āļ§āļ“āđ€āļŠāļīāļ‡āļ•āļąāļ§āđ€āļĨāļ‚āļ‚āļ­āļ‡āļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ‚āļ­āļ‡āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡ 4) āđƒāļ™āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđāļœāđˆāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļĄāļĩāļĢāļđāļ›āļĢāđˆāļēāļ‡āļ‹āļąāļšāļ‹āđ‰āļ­āļ™ āļœāļĨāļāļēāļĢāļ„āļģāļ™āļ§āļ“āļˆāļēāļāļ§āļīāļ˜āļĩāļšāļēāļ§āļ”āļēāļĢāļĩāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒāļĄāļĩāļ„āđˆāļēāļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāđ‚āļ›āļĢāđāļāļĢāļĄāđ„āļŸāđ„āļ™āļ•āđŒāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒIn this paper, an analysis of the Mindlin plate on a multi- layered elastic foundation by Boundary Element Method (BEM) is presented. This analysis employed the principle of the analog equation. According to this concept, the governing differential equations of the original problem are replaced by Poisson’ s equations with fictitious sources under the same boundary conditions. Then the boundary element technique is applied to the established integral equations of solution. The radial basis function series is applied to approximate the fictitious sources. In this work, Thin Plate Splines (TPS) as the radial basis function are chosen. Domain integrals are converted to boundary integrals by employing boundary element technique. Consequently, the solutions of the problem are obtained by boundary integral equation in which the boundary of the problem is only discretized into elements. From this study, the results can be summarized as follows: 1) The results of the plate analyzed by the boundary element method compared with analytical solutions are excellent in terms of accuracy. 2) The boundary conditions directly affect behaviors of the plate structures. 3 ) A number of foundation layers have an influence on numerical results of structural responses. 4) In the analysis of plates with complex shapes, the results from the proposed method are in good agreement with those obtained from the finite element method

    Effect of Nanosilica Particle Size on the Water Permeability, Abrasion Resistance, Drying Shrinkage, and Repair Work Properties of Cement Mortar Containing Nano-SiO2

    No full text
    This work presents the effect of nanosilica particle sizes on durability properties and repair work properties of cement mortar containing nanosilica (NS). Three different NS particle sizes of 12, 20, and 40 nm were used and compared with those of cement mortar without NS and cement mortar with silica fume (SF). Interesting results were obtained in which the particle size of NS affected directly the abrasion resistance and water permeability. NS with particle size of 40 nm is the optimum size and gave the highest abrasion resistance and water permeability. For repair work properties, cement mortars containing NS (12 and 20 nm) and SF experienced higher drying shrinkage than that of cement mortar without NS and then presented cracking behavior and debonding between the cement mortars and concrete substrate. Cement mortar containing 40 nm of NS gave the lowest drying shrinkage, the lowest crack number, and the highest adhesive strength. These results indicate that the particle size of NS affected not only the durability properties but also the repair work properties of cement mortar

    āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđāļœāđˆāļ™āļžāļ·āđ‰āļ™āļŦāļ™āļēāļ­āļ­āļāđ€āļ‹āļ•āļīāļāđāļšāļšāļ­āļ­āļĢāđŒāđ‚āļ—āļ—āļĢāļ­āļ›āļīāļāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļšāļēāļ§āļ™āđŒāļ”āļēāļĢāļĩāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒAnalysis of Thick Orthotropic Auxetic Plates by Boundary Element Method

    No full text
    āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āđ€āļŠāļ™āļ­āļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļšāļēāļ§āļ™āđŒāļ”āļēāļĢāļĩāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒāđ€āļžāļ·āđˆāļ­āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđāļœāđˆāļ™āļžāļ·āđ‰āļ™āļŦāļ™āļēāļ—āļĩāđˆāļ—āļģāļˆāļēāļāļ§āļąāļŠāļ”āļļāļ­āļ­āļāđ€āļ‹āļ•āļīāļāđāļšāļšāļ­āļ­āļĢāđŒāđ‚āļ—āļ—āļĢāļ­āļ›āļīāļāđ‚āļ”āļĒāđƒāļŠāđ‰āļŠāļĄāļĄāļ•āļīāļāļēāļ™āđāļœāđˆāļ™āļžāļ·āđ‰āļ™āļŦāļ™āļēāļ•āļēāļĄāļ—āļĪāļĐāļŽāļĩāļ‚āļ­āļ‡āļĄāļīāļ™āļ”āđŒāļĨāļīāļ™āļ‹āļķāđˆāļ‡āļžāļīāļˆāļēāļĢāļ“āļēāļāļēāļĢāđ€āļŠāļĩāļĒāļĢāļđāļ›āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāđāļĢāļ‡āđ€āļ‰āļ·āļ­āļ™ āđ‚āļ”āļĒāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āđ€āļ āļ—āļ­āļ­āļāđ€āļ‹āļ•āļīāļāđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāļ—āļĩāđˆāļĄāļĩāļ„āđˆāļēāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ›āļąāļ§āļ‹āļ‡āđ€āļ›āđ‡āļ™āļĨāļš āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļœāļĨāđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļāļēāļĢāļˆāļąāļ”āđ€āļĢāļĩāļĒāļ‡āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļ āļēāļĒāđƒāļ™āļ‚āļ­āļ‡āļ§āļąāļŠāļ”āļļ āļĨāļąāļāļĐāļ“āļ°āļ‚āļ­āļ‡āđāļœāđˆāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļˆāļ°āđ€āļ›āđ‡āļ™āđāļœāđˆāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļĄāļĩāļ—āļĩāđˆāļĢāļ­āļ‡āļĢāļąāļšāđāļšāļšāļ•āđˆāļēāļ‡āđ† āļŦāļĢāļ·āļ­āļĄāļĩāļ—āļĩāđˆāļĢāļ­āļ‡āļĢāļąāļšāđāļšāļšāļœāļŠāļĄ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļŦāļĨāļąāļāļāļēāļĢāļŠāļĄāļāļēāļĢāđāļ­āļ™āļ°āļĨāđ‡āļ­āļāļ‹āļķāđˆāļ‡āļˆāļ°āļŠāļēāļĄāļēāļĢāļ–āđāļ—āļ™āļŠāļĄāļāļēāļĢāļ„āļ§āļšāļ„āļļāļĄāļ”āļąāđ‰āļ‡āđ€āļ”āļīāļĄāļ‚āļ­āļ‡āļ›āļąāļāļŦāļēāļ‹āļķāđˆāļ‡āļĄāļĩāļ„āļ§āļēāļĄāļ‹āļąāļšāļ‹āđ‰āļ­āļ™āļ—āļēāļ‡āļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒāļ”āđ‰āļ§āļĒāļŠāļĄāļāļēāļĢāļ›āļąāļ§āļ‹āļ‡āļŠāļēāļĄāļŠāļĄāļāļēāļĢ āļ āļēāļĒāđƒāļ•āđ‰āļāļēāļĢāļāļĢāļ°āļ—āļģāļˆāļēāļāđāļŦāļĨāđˆāļ‡āļāļģāđ€āļ™āļīāļ”āļŠāļĄāļĄāļ•āļīāđ‚āļ”āļĒāļĄāļĩāđ€āļ‡āļ·āđˆāļ­āļ™āđ„āļ‚āļ—āļĩāđˆāļ‚āļ­āļšāđ€āļ‚āļ•āļ„āļ‡āđ€āļ”āļīāļĄ āļˆāļēāļāļ™āļąāđ‰āļ™āđƒāļŠāđ‰āđ€āļ—āļ„āļ™āļīāļ„āļ‚āļ­āļ‡āļ§āļīāļ˜āļĩāļšāļēāļ§āļ™āđŒāļ”āļēāļĢāļĩāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒāļĢāđˆāļ§āļĄāļāļąāļšāđ€āļĢāđ€āļ”āļĩāļĒāļĨāđ€āļšāļŠāļīāļŠāļŸāļąāļ‡āļāđŒāļŠāļąāļ™āļ—āļģāđƒāļŦāđ‰āđ„āļ”āđ‰āļŠāļĄāļāļēāļĢāļ­āļīāļ™āļ—āļīāļāļĢāļąāļĨāļ—āļĩāđˆāļ‚āļ­āļšāđ€āļ‚āļ• āļ‹āļķāđˆāļ‡āļˆāļ°āļĄāļĩāļāļēāļĢāđāļšāđˆāļ‡āđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒāđ€āļ‰āļžāļēāļ°āļ—āļĩāđˆāļ‚āļ­āļšāđ€āļ‚āļ•āļ‚āļ­āļ‡āļ›āļąāļāļŦāļēāđ€āļ—āđˆāļēāļ™āļąāđ‰āļ™ āļˆāļēāļāļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļœāļĨāļāļēāļĢāļ„āļģāļ™āļ§āļ“āļˆāļēāļāļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ„āļ§āļēāļĄāļ–āļđāļāļ•āđ‰āļ­āļ‡āļ—āļĩāđˆāļ”āļĩāđ€āļĒāļĩāđˆāļĒāļĄāđ€āļĄāļ·āđˆāļ­āđ€āļ—āļĩāļĒāļšāļāļąāļšāļ„āļģāļ•āļ­āļšāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļ§āļīāļ˜āļĩāđ€āļŠāļīāļ‡āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ āđāļĨāļ°āļĄāļĩāļ„āļ§āļēāļĄāļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļ„āļģāļ•āļ­āļšāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ—āđŒāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒ āļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ•āđˆāļēāļ‡āđ† āļ•āđˆāļ­āļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ‚āļ­āļ‡āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āđāļœāđˆāļ™āļžāļ·āđ‰āļ™āđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļĻāļķāļāļĐāļēāļ­āļĒāđˆāļēāļ‡āļĨāļ°āđ€āļ­āļĩāļĒāļ” āđāļĨāļ°āđ€āļžāļ·āđˆāļ­āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ–āļķāļ‡āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ‚āļ­āļ‡āļ§āļīāļ˜āļĩāļšāļēāļ§āļ™āđŒāļ”āļēāļĢāļĩāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒāļ—āļĩāđˆāļ™āļģāđ€āļŠāļ™āļ­āđƒāļ™āļ‡āļēāļ™āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āđāļœāđˆāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļĄāļĩāļĢāļđāļ›āļĢāđˆāļēāļ‡āļ‹āļąāļšāļ‹āđ‰āļ­āļ™āđāļšāļšāļ•āđˆāļēāļ‡āđ† āđ„āļ”āđ‰āļ—āļģāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđāļĨāļ°āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļœāļĨāļāļēāļĢāļ„āļģāļ™āļ§āļ“āļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ—āđŒāđ€āļ­āļĨāļīāđ€āļĄāļ™āļ•āđŒThe aim of this paper is to propose the application of boundary element method to analyze thick orthotropic auxetic plates based on Mindlin’s thick plate theory in which the shear deformation is considered. Auxetics are defined as materials possess a negative Poisson’s ratio due to their internal structures. Arbitrary plates with various or mixed boundary conditions are studied. This research employs the principle of the analog equation. According to this concept, the complicated governing differential equations of the original problem are replaced by three Poisson’s equations with fictitious sources under the same boundary conditions. Then the boundary element technique together with the radial basis function series is applied to establish the boundary integral equations. Thus, the solution of the problem can be obtained from the boundary integral equations which the boundary of the problem is only discretized into elements. Numerical results from the proposed method show an excellent accuracy compared with available analytical solutions and are in good agreement with the finite element solution. The influences of various parameters on responses of plate structures are thoroughly investigated. To demonstrate efficiency of the boundary element method proposed in this paper, thick orthotropic auxetic plates with complex shapes are analyzed and compared the obtained numerical results with those from the finite element solution

    Analysis of a Fractional Variational Problem Associated with Cantilever Beams Subjected to a Uniformly Distributed Load

    No full text
    In this paper, we investigate the existence and uniqueness of minimizers of a fractional variational problem generalized from the energy functional associated with a cantilever beam under a uniformly distributed load. We apply the fractional Euler–Lagrange condition to formulate the minimization problem as a boundary value problem and obtain existence and uniqueness results in both L2 and L∞ settings. Additionally, we characterize the continuous dependence of the minimizers on varying loads in the energy functional. Moreover, an approximate solution is derived via the homotopy perturbation method, which is numerically demonstrated in various examples. The results show that the deformations are larger for smaller orders of the fractional derivative
    corecore