5 research outputs found
Computational representations for multi state design tasks and enumeration of mechanical device behaviour
The role of a computer emerged from modeling and analyzing concepts (ideas) to generate concepts. Research into methods for supporting conceptual design using automated synthesis had attracted much attention in the past decades. To find out how designers synthesize solution concepts for multi-state mechanical devices, ten experimental studies were conducted. Observations from these empirical studies would be used as the basis to develop knowledge involved in the multi-state design synthesis process. In this paper, we propose a computational representation for expressing the multi-state design task and for enumerating multi-state behaviors of kinematic pairs and mechanisms. This computational representation would be used to formulate computational methods for the synthesis process to develop a system for supporting design synthesis of multiple state mechanical devices by generating a comprehensive variety of solution alternatives
Analysing modifica-tions in the synthesis of multiple state mechanical devices using configuration space and topology graphs
Automated synthesis of mechanical designs is an important step towards the development of an intelligent CAD system. Research into methods for supporting conceptual design using automated synthesis has attracted much attention in the past decades. In our research, ten experimental studies are conducted to find out how designers synthesize solution concepts for multi-state mechanical devices. The designers are asked to think aloud, while carrying out the synthesis. These design synthesis processes are video recorded. It has been found that modification of kinematic pairs and mechanisms is the major activity carried out by all the designers. This paper presents an analysis of these synthesis processes using configuration space and topology graph to identify and classify the types of modifications that take place. Understanding of these modification processes and the context in which they happened is crucial to develop a system for supporting design synthesis of multiple state mechanical devices that is capable of creating a comprehensive variety of solution alternatives
Hydrophilic nano-aluminum oxide containing polyphenylsulfone hollow fiber membranes for the extraction of arsenic (As-V) from drinking water
In the present work, hollow fiber ultrafiltration membranes were fabricated by incorporating intensified dosages of nano-aluminum oxide (nano-Al2O3; 0.6 wt%, 1.0 wt% and 1.5 wt%) into cellulose acetate (CA)/polyphenylsulfone (PPSU) and cellulose acetate phthalate (CAP)/PPSU by non-solvent induced phase separation (NIPS) process. The topological structures and the morphologies were investigated using atomic force microscope (AFM) and scanning electron microscope (SEM). The crystalline and morphological structures of the nano-Al2O3 were investigated using X-ray diffraction (XRD) and transmission electron microscope (TEM) respectively. Fourier transform infra-red spectroscope (FTIR) and x-ray photoelectron spectroscopy (XPS) analysis have been carried out to validate the dosages of nano-Al2O3, CA and CAP on PPSU membranes. The membrane's surface charge measurement of 1.5 wt% of nano-Al2O3 in CA/PPSU (ALCA-1.5) was scrutinized by zeta potential analysis. Membranes removed more arsenate oxide as the removal rate from membranes ALCA-1.5 and 1.0 wt% of nano-Al2O3 in CA/PPSU (ALCA-1) was 98.67% and 94.89% with retention permeabilities of 88.41 L/m2h bar and 53.53 L/m2h bar respectively from laboratory prepared 1 ppm of aqueous arsenic solution with pH in the range 6.8 ± 0.2 at 1 bar transmembrane pressure. In addition, membrane's antifouling analysis was performed using laboratory prepared 0.8 g/L (Bovine Serum Albumin) BSA as standard protein solution
Effect of binary zinc-magnesium oxides on polyphenylsulfone/cellulose acetate derivatives hollow fiber membranes for the decontamination of arsenic from drinking water
Arsenic contamination is continuously threatening the safety of drinking water in many parts of the world. The consumption of chronic arsenic contaminated drinking water can cause serious health related issues. Therefore, the synthesis of novel materials is very much essential for the selective removal of arsenic from aqueous solution. In the present investigation, the effect of increased concentrations (0.6, 1.0 and 1.5 wt%) of binary zinc-magnesium oxide (ZnO-MgO) on cellulose acetate (CA)/polyphenylsulfone (PPSU) and cellulose acetate phthalate (CAP)/PPSU hollow fiber membranes for arsenic removal was performed. As used ZnO-MgO was characterized by using x-ray diffraction (XRD), transmission electron microscopy (TEM) and particle size distribution. Fabricated hollow fiber membranes were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), zeta potential, fourier transform infrared (FTIR), x-ray photoelectron spectrophotometer (XPS), thermogravimetric analysis (TGA) and antifouling studies. The results revealed that, there is significant enhancement in the overall performance of the ZnO-MgO containedmembranes. An enhancement of arsenic removal properties was demonstrated from 0.6 wt% of ZnO-MgO in CAP/PPSU (ZMCAP-0.6) membrane was 81.31% with the retention permeability of 69.58 L/m2h bar respectively. Similarly, 1 wt% of ZnO-MgO in CA/PPSU (ZMCA-1) was found to be 78.48% and 198.47 L/m2h bar respectively using 1 ppm laboratory prepared aqueous arsenic solution (pH 6.8 ± 0.2) at 1 bar transmembrane pressure. In addition, improved antifouling properties was noticed with an increased flux recovery ratio and enhanced thermal stability from ZnO-MgO contained membranes. Therefore, as fabricated ZnO-MgO contained membranes provided enhanced arsenic removal tendency without compromising the retention permeability