37 research outputs found

    Targeted nonviral gene therapy in prostate cancer

    Get PDF
    Prostate cancer is the second most widespread cancer in men worldwide. Treatment choices are limited to prostatectomy, hormonal and radiotherapy that commonly have deleterious side effects and vary in their efficacy, depending on the stage of the disease. Among novel experimental strategies, gene therapy holds great promise for the treatment of prostate cancer. However, its use is currently limited by the lack of delivery systems able to selectively deliver the therapeutic genes to the tumors after intravenous administration without major drawbacks. To remediate to this problem, a wide range of non-viral delivery approaches have been developed to specifically deliver DNA-based therapeutic agents to their site of action. This review provides an overview of the various non-viral delivery strategies and gene therapy concepts used to deliver therapeutic DNA to prostate cancer cells, and focuses on the recent therapeutic advances being made so far

    Enhanced gene expression in the brain following intravenous administration of lactoferrin-bearing polypropylenimine dendriplex

    Get PDF
    The possibility of using gene therapy for the treatment of brain diseases such as brain cancer, Alzheimer's and Parkinson's diseases, is currently hampered by the lack of gene delivery systems able to cross the blood–brain barrier and deliver DNA to the brain following intravenous administration. On the basis that lactoferrin can effectively reach the brain by using specific receptors for crossing the blood–brain barrier, we propose to investigate if a lactoferrin-bearing generation 3-diaminobutyric polypropylenimine (DAB) dendrimer would allow the transport of plasmid DNA to the brain after intravenous administration. In this work, we demonstrated that the conjugation of lactoferrin to the dendrimer led to an enhanced DNA uptake by 2.1-fold in bEnd.3 murine brain capillary endothelial cells compared to the unmodified dendriplex in vitro. In vivo, the intravenous administration of lactoferrin-bearing DAB dendriplex resulted in a significantly increased gene expression in the brain, by more than 6.4-fold compared to that of DAB dendriplex, while decreasing gene expression in the lung and the kidneys. Gene expression in the brain was significantly higher than in any other major organs of the body. Lactoferrin-bearing generation 3 polypropylenimine dendrimer is therefore a highly promising delivery system for systemic gene delivery to the brain

    Development of transferrin-bearing vesicles encapsulating aspirin for cancer therapy

    Get PDF
    Originally developed for the treatment of inflammatory disorders, the non-steroidal antiinflammatory drug aspirin was shown to have a preventive effect against cancer in the past decades. Most importantly, recent studies suggested that it might also provide a therapeutic benefit in the treatment of cancer in vitro. However, this drug failed to specifically reach tumors at a therapeutic concentration following intravenous administration, thus resulting in lack of efficacy on tumors. In this work, we demonstrated that aspirin could be formulated in transferrin-bearing vesicles and that this tumor-targeted formulation could lead to an increase in the anti-proliferative efficacy of the drug in three cancer cell lines in vitro. The in vitro therapeutic efficacy of aspirin was significantly improved when formulated in transferrin-bearing vesicles, by about 2-fold compared to that of drug solution. These results are promising and support the optimization of this delivery system to further improve its potential as a therapeutic tool in combination with other anti-cancer therapies

    Transferrin-bearing liposomes entrapping plumbagin for targeted cancer therapy

    Get PDF
    The therapeutic potential of plumbagin, a naphthoquinone extracted from the officinal leadwort with anticancer properties, is hampered by its failure to specifically reach tumours at a therapeutic concentration after intravenous administration, without secondary effects on normal tissues. Its use in clinic is further limited by its poor aqueous solubility, its spontaneous sublimation, and its rapid elimination in vivo. We hypothesize that the entrapment of plumbagin within liposomes grafted with transferrin, whose receptors are overexpressed on many cancer cells, could result in a selective delivery to tumours after intravenous administration. The objectives of this study were therefore to prepare and characterize transferrin-targeted liposomes entrapping plumbagin and to evaluate their therapeutic efficacy in vitro and in vivo. The entrapment of plumbagin in transferrin-bearing liposomes led to an increase in plumbagin uptake by cancer cells and improved antiproliferative efficacy and apoptosis activity in B16-F10, A431, and T98G cell lines compared with that observed with the drug solution. In vivo, the intravenous injection of transferrin-bearing liposomes entrapping plumbagin led to tumour suppression for 10% of B16-F10 tumours and tumour regression for a further 10% of the tumours. By contrast, all the tumours treated with plumbagin solution or left untreated were progressive. The animals did not show any signs of toxicity. Transferrin-bearing liposomes entrapping plumbagin are therefore highly promising therapeutic systems that should be further optimized as a therapeutic tool for cancer treatment

    Transferrin and the transferrin receptor for the targeted delivery of therapeutic agents to the brain and cancer cells

    Get PDF
    The potential use of many promising novel drugs is limited by their inability to specifically reach their site of action after intravenous administration, without secondary effects on healthy tissues. In order to remediate this problem, the protein transferrin (Tf) has been extensively studied as a targeting molecule for the transport of drug and gene delivery systems to the brain and cancer cells. A wide range of delivery approaches have been developed to target the Tf receptor and they have already improved the specific delivery of Tf-bearing therapeutic agents to their site of action. This review provides a summary of the numerous delivery strategies used to target the Tf receptor and focuses on recent therapeutic advances

    Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment

    Get PDF
    BACKGROUND: Docetaxel chemotherapy in prostate cancer has a modest impact on survival. To date, efforts to develop combination therapies have not translated into new treatments. We sought to develop a novel therapeutic strategy to tackle chemoresistant prostate cancer by enhancing the efficacy of docetaxel. METHODS: We performed a drug-repurposing screen by using murine-derived prostate cancer cell lines driven by clinically relevant genotypes. Cells were treated with docetaxel alone, or in combination with drugs (n = 857) from repurposing libraries, with cytotoxicity quantified using High Content Imaging Analysis. RESULTS: Mebendazole (an anthelmintic drug that inhibits microtubule assembly) was selected as the lead drug and shown to potently synergise docetaxel-mediated cell killing in vitro and in vivo. Dual targeting of the microtubule structure was associated with increased G2/M mitotic block and enhanced cell death. Strikingly, following combined docetaxel and mebendazole treatment, no cells divided correctly, forming multipolar spindles that resulted in aneuploid daughter cells. Liposomes entrapping docetaxel and mebendazole suppressed in vivo prostate tumour growth and extended progression-free survival. CONCLUSIONS: Docetaxel and mebendazole target distinct aspects of the microtubule dynamics, leading to increased apoptosis and reduced tumour growth. Our data support a new concept of combined mebendazole/docetaxel treatment that warrants further clinical evaluation

    Regression of melanoma following intravenous injection of plumbagin entrapped in transferrin-conjugated, lipid–polymer hybrid nanoparticles

    Get PDF
    Background: Plumbagin, a naphthoquinone extracted from the officinal leadwort presenting promising anti-cancer properties, has its therapeutic potential limited by its inability to reach tumors in a specific way at a therapeutic concentration following systemic injection. The purpose of this study is to assess whether a novel tumor-targeted, lipid–polymer hybrid nanoparticle formulation of plumbagin would suppress the growth of B16-F10 melanoma in vitro and in vivo. Methods: Novel lipid–polymer hybrid nanoparticles entrapping plumbagin and conjugated with transferrin, whose receptors are present in abundance on many cancer cells, have been developed. Their cellular uptake, anti-proliferative and apoptosis efficacy were assessed on various cancer cell lines in vitro. Their therapeutic efficacy was evaluated in vivo after tail vein injection to mice bearing B16-F10 melanoma tumors. Results: The transferrin-bearing lipid–polymer hybrid nanoparticles loaded with plumbagin resulted in the disappearance of 40% of B16-F10 tumors and regression of 10% of the tumors following intravenous administration. They were well tolerated by the mice. Conclusion: These therapeutic effects therefore make transferrin-bearing lipid–polymer hybrid nanoparticles entrapping plumbagin a highly promising anti-cancer nanomedicine

    PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells

    Get PDF
    Diaminobutyric polypropylenimine (DAB) dendrimers have been shown to be highly efficient non-viral gene delivery systems for cancer therapy. However, their cytotoxicity currently limits their applications. To overcome this issue, PEGylation of DAB dendrimer, using various PEG molecular weights and dendrimer generations, has been attempted to decrease the cytotoxicity and enhance the DNA condensation, size and zeta potential, cellular uptake and transfection efficacy of these dendriplexes. Among all the PEGylated dendrimers synthesized, generation 3- and generation 4-DAB conjugated to low molecular weight PEG (2 kDa) at a dendrimer: DNA ratio of 20:1 and 10:1 resulted in an increase in gene expression on almost all tested cancer cells lines (by up to 3.2-fold compared to unmodified dendrimer in A431 cells). The highest level of β-galactosidase gene expression (10.07 × 10−3 ± 0.09 × 10−3 U/mL) was obtained following treatment of B16F10-Luc cells with G4-dendrimer PEGylated with PEG2K at a dendrimer: DNA ratio of 20:1. These delivery systems significantly decreased cytotoxicity on B16F10-Luc cells, by more than 3.4-fold compared to unmodified dendrimer. PEGylated generations 3- and 4-DAB dendrimers are therefore promising gene delivery systems for cancer therapy, combining low cytotoxicity and high transfection efficacy

    Preparation of zein-based nanoparticles : nanoprecipitation versus microfluidic-assisted manufacture, effects of PEGylation on nanoparticle characteristics and cellular uptake by melanoma cells

    Get PDF
    Background: The manufacture of nanoparticles using manual methods is hampered by its challenging scaleup and poor reproducibility. To overcome this issue, the production of zein nanoparticles entrapping a lipophilic drug model, coumarin-6, by using a microfluidic system was assessed in this study. The influence of PEG density and chain length on zein nanoparticle characteristics, as well as their uptake efficacy in melanoma cancer cells, was also evaluated. Methods: Zein nanoparticles were prepared by both manual and microfluidic approaches to allow comparison between the two processes. PEGylated zein nanoparticles with various PEG densities and chain lengths were produced by nanoprecipitation and characterized. Their cellular uptake was evaluated on B16F10 melanoma cancer cells in vitro. Results: Zein nanoparticles have successfully been produced by both manual and microfluidic approaches. Parameters such as total flow rate and flow rate ratio of the aqueous and organic phases in microfluidic process, as well as the method preparation and aqueous to organic phase volume ratio during nanoprecipitation, have been shown to strongly influence the characteristics of the resulting nanoparticles. Continuous microfluidics led to the production of nanoparticles with low yield and drug entrapment, unlike nanoprecipitation, which resulted in zein nanoparticles with an appropriate size and an optimal drug entrapment efficiency of 64%. The surface modification of the nanoparticles produced by nanoprecipitation, with lower PEG density and shorter PEG chain length made mPEG5K-zein (0.5:1) the most favorable formulation in our study, resulting in enhanced stability and higher coumarin-6 uptake by melanoma cancer cells. Conclusion: mPEG5K-zein (0.5:1) nanoparticles prepared by nanoprecipitation were the most promising formulation in our study, exhibiting increased stability and enhancing coumarin-6 uptake by melanoma cancer cells
    corecore