36 research outputs found
Sharp Raman Anomalies and Broken Adiabaticity at a Pressure Induced Transition from Band to Topological Insulator in Sb2Se3
The nontrivial electronic topology of a topological insulator is thus far
known to display signatures in a robust metallic state at the surface. Here, we
establish vibrational anomalies in Raman spectra of the bulk that signify
changes in electronic topology: an E2 g phonon softens unusually and its
linewidth exhibits an asymmetric peak at the pressure induced electronic
topological transition (ETT) in Sb2Se3 crystal. Our first-principles
calculations confirm the electronic transition from band to topological
insulating state with reversal of parity of electronic bands passing through a
metallic state at the ETT, but do not capture the phonon anomalies which
involve breakdown of adiabatic approximation due to strongly coupled dynamics
of phonons and electrons. Treating this within a four-band model of topological
insulators, we elucidate how nonadiabatic renormalization of phonons
constitutes readily measurable bulk signatures of an ETT, which will facilitate
efforts to develop topological insulators by modifying a band insulator