5 research outputs found

    Variations of the UNC13D gene in patients with autoimmune lymphoproliferative syndrome.

    Get PDF
    Autoimmune lymphoproliferative syndrome (ALPS) is caused by genetic defects decreasing Fas function and is characterized by lymphadenopathy/splenomegaly and expansion of CD4/CD8 double-negative T cells. This latter expansion is absent in the ALPS variant named Dianzani Autoimmune/lymphoproliferative Disease (DALD). In addition to the causative mutations, the genetic background influences ALPS and DALD development. We previously suggested a disease-modifying role for the perforin gene involved in familial hemophagocytic lymphohistiocytosis (FHL). The UNC13D gene codes for Munc13-4, which is involved in perforin secretion and FHL development, and thus, another candidate for a disease-modifying role in ALPS and DALD. In this work, we sequenced UNC13D in 21 ALPS and 20 DALD patients and compared these results with sequences obtained from 61 healthy subjects and 38 multiple sclerosis (MS) patients. We detected four rare missense variations in three heterozygous ALPS patients carrying p.Cys112Ser, p.Val781Ile, and a haplotype comprising both p.Ile848Leu and p.Ala995Pro. Transfection of the mutant cDNAs into HMC-1 cells showed that they decreased granule exocytosis, compared to the wild-type construct. An additional rare missense variation, p.Pro271Ser, was detected in a healthy subject, but this variation did not decrease Munc13-4 function. These data suggest that rare loss-of-function variations of UND13D are risk factors for ALPS development

    Differential induction of IL-17, IL-10, and IL-9 in human T helper cells by B7h and B7.1.

    Get PDF
    ICOS and CD28 are expressed by T cells and are involved in costimulation of cytokine production in T helper (TH) cells. ICOS binds B7h expressed by several cell types, whereas CD28 binds B7.1 and B7.2 expressed by activated antigen presenting cells. This work investigated the role of B7h and B7.1 in TH17 and TH9 cell differentiation by assessing activity of recombinant B7h-Fc and B7.1-Fc on human na\uefve TH cells activated in the presence of different combinations of exogenous cytokines. In the presence of TGF-\u3b21 and IL-1\u3b2 (TH17 promoting condition), B7h-Fc was more effective than B7.1-Fc in inducing IL-17A and IL-10 secretion, whereas B7.1-Fc was more effective in inducing IL-17F. Dual costimulation with B7h-Fc and B7.1-Fc displayed an intermediate pattern with predominance of IL-17F over IL-17A, secretion of high levels of IL-10, and secretion of IL-9 levels lower than those induced by B7.1-Fc alone. In the presence of TGF-\u3b21 and IL-4 (TH9 promoting condition), B7h-Fc induced IL-17A only, whereas B7.1-Fc induced also IL-17F, IL-10, and high levels of IL-9. Experiments on memory TH cells showed that B7h-Fc mainly supported secretion of IL-17A and IL-10, whereas B7.1-Fc supported secretion of IL-17A, IL-17F, IL-10, and IL-9. These data indicate that B7h and B7.1 play different roles in modulation of TH17 and TH9 differentiation. This plasticity might be important in the immune response to pathogens and tumors, and in the development of autoimmune diseases, and should be taken in consideration in designing of immunotherapeutic protocols triggering ICOS or CD28

    Variations of the UNC13D gene in patients with autoimmune lymphoproliferative syndrome.

    No full text
    Autoimmune lymphoproliferative syndrome (ALPS) is caused by genetic defects decreasing Fas function and is characterized by lymphadenopathy/splenomegaly and expansion of CD4/CD8 double-negative T cells. This latter expansion is absent in the ALPS variant named Dianzani Autoimmune/lymphoproliferative Disease (DALD). In addition to the causative mutations, the genetic background influences ALPS and DALD development. We previously suggested a disease-modifying role for the perforin gene involved in familial hemophagocytic lymphohistiocytosis (FHL). The UNC13D gene codes for Munc13-4, which is involved in perforin secretion and FHL development, and thus, another candidate for a disease-modifying role in ALPS and DALD. In this work, we sequenced UNC13D in 21 ALPS and 20 DALD patients and compared these results with sequences obtained from 61 healthy subjects and 38 multiple sclerosis (MS) patients. We detected four rare missense variations in three heterozygous ALPS patients carrying p.Cys112Ser, p.Val781Ile, and a haplotype comprising both p.Ile848Leu and p.Ala995Pro. Transfection of the mutant cDNAs into HMC-1 cells showed that they decreased granule exocytosis, compared to the wild-type construct. An additional rare missense variation, p.Pro271Ser, was detected in a healthy subject, but this variation did not decrease Munc13-4 function. These data suggest that rare loss-of-function variations of UND13D are risk factors for ALPS development
    corecore