60 research outputs found

    Biomimetic Collagen Tissues: Collagenous Tissue Engineering and Other Applications

    No full text

    Multiparticle azimuthal correlations for extracting event-by-event elliptic and triangular flow in Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    No full text
    International audienceWe present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at forward rapidity 1<|η|<3 in Au + Au collisions at sNN=200 GeV, as a function of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients v2{2},v2{4},v2{6}, and v2{8}, and triangular flow coefficients v3{2} and v3{4}. Using the small-variance limit, we estimate the mean and variance of the event-by-event v2 distribution from v2{2} and v2{4}. In a complementary analysis, we also use a folding procedure to study the distributions of v2 and v3 directly, extracting both the mean and variance. Implications for initial geometrical fluctuations and their translation into the final-state momentum distributions are discussed

    Charm- and Bottom-Quark Production in Au++Au Collisions at sNN\sqrt{s_{_{NN}}} = 200 GeV

    No full text
    The invariant yield of electrons from open-heavy-flavor decays for 1<pT<81<p_T<8 GeV/cc at midrapidity ∣y∣<0.35|y|<0.35 in Au++Au collisions at sNN\sqrt{s_{_{NN}}} = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider. A displaced-vertex analysis with the PHENIX silicon-vertex detector enables extraction of the fraction of charm and bottom hadron decays and unfolding of the invariant yield of parent charm and bottom hadrons. The nuclear-modification factors RAAR_{AA} for electrons from charm and bottom hadron decays and heavy-flavor hadrons show both a centrality and a quark-mass dependence, indicating suppression in the quark-gluon plasma produced in these collisions that is medium sized and quark-mass dependent

    Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized p+pp+p collisions at s\sqrt {s} = 510 GeV

    No full text
    International audienceThe PHENIX experiment at the Relativistic Heavy Ion Collider has measured the longitudinal double spin asymmetries, ALL, for charged pions at midrapidity (|η|<0.35) in longitudinally polarized p+p collisions at s=510  GeV. These measurements are sensitive to the gluon spin contribution to the total spin of the proton in the parton momentum fraction x range between 0.04 and 0.09. One can infer the sign of the gluon polarization from the ordering of pion asymmetries with charge alone. The asymmetries are found to be consistent with global quantum-chromodynamics fits of deep-inelastic scattering and data at s=200  GeV, which show a nonzero positive contribution of gluon spin to the proton spin

    J/ψJ/\psi and ψ(2S)\psi(2S) production at forward rapidity in pp+pp collisions at s=510\sqrt{s}=510 GeV

    No full text
    International audienceThe PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive J/ψ, and cross section ratio of ψ(2S) to J/ψ at forward rapidity in p+p collisions at s=510  GeV via the dimuon decay channel. Comparison is made to inclusive J/ψ cross sections measured at s=200  GeV and 2.76–13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-x gluons in the proton at low transverse momentum (pT) and to next-to-leading order nonrelativistic QCD calculations for the rest of the pT range. These calculations overestimate the data at low pT. While consistent with the data within uncertainties above ≈3  GeV/c, the calculations are systematically below the data. The total cross section times the branching ratio is BR dσppJ/ψ/dy(1.2<|y|<2.2,0<pT<10  GeV/c)=54.3±0.5(stat)±5.5(syst)  nb

    Charm- and Bottom-Quark Production in Au++Au Collisions at sNN\sqrt{s_{_{NN}}} = 200 GeV

    No full text
    The invariant yield of electrons from open-heavy-flavor decays for 1<pT<81<p_T<8 GeV/cc at midrapidity ∣y∣<0.35|y|<0.35 in Au++Au collisions at sNN\sqrt{s_{_{NN}}} = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider. A displaced-vertex analysis with the PHENIX silicon-vertex detector enables extraction of the fraction of charm and bottom hadron decays and unfolding of the invariant yield of parent charm and bottom hadrons. The nuclear-modification factors RAAR_{AA} for electrons from charm and bottom hadron decays and heavy-flavor hadrons show both a centrality and a quark-mass dependence, indicating suppression in the quark-gluon plasma produced in these collisions that is medium sized and quark-mass dependent

    Measurement of J/ψJ/\psi at forward and backward rapidity in p+pp+p, p+Ap+Al, p+Ap+Au, and 3^3He++Au collisions at sNN=200 GeV\sqrt{s_{_{NN}}}=200~{\rm GeV}

    No full text
    International audienceCharmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au, and He3+Au, at sNN=200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and He3, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and He3+Au. However, for 0%–20% central collisions at backward rapidity, the modification factor for He3+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size
    • 

    corecore