1,222 research outputs found
Applicability of APT aided-inertial system to crustal movement monitoring
The APT system, its stage of development, hardware, and operations are described. The algorithms required to perform the real-time functions of navigation and profiling are presented. The results of computer simulations demonstrate the feasibility of APT for its primary mission: topographic mapping with an accuracy of 15 cm in the vertical. Also discussed is the suitability of modifying APT for the purpose of making vertical crustal movement measurements accurate to 2 cm in the vertical, and at least marginal feasibility is indicated
Towards the 3D-Imaging of Sources
Geometric details of a nuclear reaction zone, at the time of particle
emission, can be restored from low relative-velocity particle-correlations,
following imaging. Some of the source details get erased and are a potential
cause of problems in the imaging, in the form of instabilities. These can be
coped with by following the method of discretized optimization for the restored
sources. So far it has been possible to produce 1-dimensional emission source
images, corresponding to the reactions averaged over all possible spatial
directions. Currently, efforts are in progress to restore angular details.Comment: Talk given at the Int. Workshop on Hot and Dense Matter in
Relativistic Heavy Ion Collisions, March 24-27, 2004, Budapest; 10 pages, 6
figure
Exploring Lifetime Effects in Femtoscopy
We investigate the role of lifetime effects from resonances and emission
duration tails in femtoscopy at RHIC in two Blast-Wave models. We find the
non-Gaussian components compare well with published source imaged data, but the
value of R_out obtained from Gaussian fits is not insensitive to the
non-Gaussian contributions when realistic acceptance cuts are applied to
models.Comment: 5 pages, 2 figure
Constraining the initial temperature and shear viscosity in a hybrid hydrodynamic model of =200 GeV Au+Au collisions using pion spectra, elliptic flow, and femtoscopic radii
A new framework for evaluating hydrodynamic models of relativistic heavy ion
collisions has been developed. This framework, a Comprehesive Heavy Ion Model
Evaluation and Reporting Algorithm (CHIMERA) has been implemented by augmenting
UVH 2+1D viscous hydrodynamic model with eccentricity fluctuations,
pre-equilibrium flow, and the Ultra-relativistic Quantum Molecular Dynamic
(UrQMD) hadronic cascade. A range of initial temperatures and shear viscosity
to entropy ratios were evaluated for four initial profiles, and
scaling with and without pre-equilibrium flow. The model results
were compared to pion spectra, elliptic flow, and femtoscopic radii from 200
GeV Au+Au collisions for the 0--20% centrality range.Two sets of initial
density profiles, scaling with pre-equilibrium flow and
scaling without were shown to provide a consistent description of all three
measurements.Comment: 21 pages, 32 figures, version 3 includes additional text for
clarification, division of figures into more manageable units, and placement
of chi-squared values in tables for ease of viewin
Recommended from our members
Review of Systematic Investigations of the Rout/Rside ratio in HBT at RHIC
We review the significant difference in the ratio R{sub out}/R{sub side} between experiment and theory in heavy-ion collisions at RHIC. This ratio is expected to be strongly correlated with the pion emission duration. Hydrodynamic models typically calculate a value that approximately equal to 1.5 and moderately dependent on k{sub T} whereas the experiments report a value close to unity and independent of k{sub T}. We review those calculations in which systematic variations in the theoretical assumptions were reported. We find that the scenario of second order phase transition or cross-over has been given insufficient attention, and may play an important role in resolving this discrepancy
- …