335 research outputs found

    Ultracold quantum gases in triangular optical lattices

    Full text link
    Over the last years the exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand for experimental environments with non-cubic lattice geometries. In this paper we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly this opens new perspectives for a lattice driven tuning of a spin dynamics resonance occurring through the interplay of quadratic Zeeman effect and spin-dependent interaction. We finally discuss further lattice configurations which can be realized with our setup.Comment: 19 pages, 7 figure

    Constraints on Warm Dark Matter from Cosmological Reionization

    Get PDF
    We study the constraints that high-redshift structure formation in the universe places on warm dark matter (WDM) dominated cosmological models. We modify the extended Press-Schechter formalism to derive the halo mass function in WDM models. We show that our predictions agree with recent numerical simulations at low redshift over the halo masses of interest. Applying our model to galaxy formation at high redshift, we find that the loss of power on small scales, together with the delayed collapse of low-mass objects, results in strong limits on the root-mean-square velocity dispersion v_rms of the WDM particles at z=0. For fermions decoupling while relativistic, these limits are equivalent to constraints on the mass m_X of the particles. The presence of a 4 billion solar mass black hole at z=5.8, believed to power the quasar SDSS 1044-1215, implies m_X > 0.5 keV (or v_rms < 0.10 km/s), assuming that the quasar is unlensed and radiating at or below the Eddington limit. Reionization by z=5.8 also implies a limit on m_X. If high-redshift galaxies produce ionizing photons with an efficiency similar to their z=3 counterparts, we find m_X > 1.2 keV (or v_rms < 0.03 km/s). However, given the uncertainties in current measurements from the proximity effect of the ionizing background at redshift 3, values of m_X as low as 0.75 keV (v_rms = 0.06 km/s) are not ruled out. The limit weakens further if, instead, the ionizing-photon production efficiency is greater at high z, but this limit will tighten considerably if reionization is shown in the future to have occurred at higher redshifts. WDM models with m_X 0.04 km/s) produce a low-luminosity cutoff in the high-redshift galaxy luminosity function which is directly detectable with the Next Generation Space Telescope (abridged).Comment: 38 pages, 10 figures, to appear in ApJ. One figure added, some discussion revise

    The Most Massive Black Holes in the Universe: Effects of Mergers in Massive Galaxy Clusters

    Get PDF
    Recent observations support the idea that nuclear black holes grew by gas accretion while shining as luminous quasars at high redshift, and they establish a relation of the black hole mass with the host galaxy's spheroidal stellar system. We develop an analytic model to calculate the expected impact of mergers on the masses of black holes in massive clusters of galaxies. We use the extended Press-Schechter formalism to generate Monte Carlo merger histories of halos with a mass 10^{15} h^{-1} Msun. We assume that the black hole mass function at z=2 is similar to that inferred from observations at z=0 (since quasar activity declines markedly at z<2), and we assign black holes to the progenitor halos assuming a monotonic relation between halo mass and black hole mass. We follow the dynamical evolution of subhalos within larger halos, allowing for tidal stripping, the loss of orbital energy by dynamical friction, and random orbital perturbations in gravitational encounters with subhalos, and we assume that mergers of subhalos are followed by mergers of their central black holes. Our analytic model reproduces numerical estimates of the subhalo mass function. We find that the most massive black holes in massive clusters typically grow by a factor ~ 2 by mergers after gas accretion has stopped. In our ten realizations of 10^{15} h^{-1} Msun clusters, the highest initial (z=2) black hole masses are 5-7 x 10^9 Msun, but four of the clusters contain black holes in the range 1-1.5 x 10^{10} Msun at z=0. Satellite galaxies may host black holes whose mass is comparable to, or even greater than, that of the central galaxy. Thus, black hole mergers can significantly extend the very high end of the black hole mass function.Comment: 13 pages, 7 figures, accepted for publication in The Astrophysical Journa

    Scaling Laws for Advection Dominated Flows: Applications to Low Luminosity Galactic Nuclei

    Get PDF
    We present analytical scaling laws for self-similar advection dominated flows. The spectra from these systems range from 108^{8} - 1020^{20} Hz, and are determined by considering cooling of electrons through synchrotron, bremsstrahlung, and Compton processes. We show that the spectra can be quite accurately reproduced without detailed numerical calculations, and that there is a strong testable correlation between the radio and X-ray fluxes from these systems. We describe how different regions of the spectrum scale with the mass of the accreting black hole, MM, the accretion rate of the gas, M˙\dot{M}, and the equilibrium temperature of the electrons, TeT_e. We show that the universal radio spectral index of 1/3 observed in most elliptical galaxies (Slee et al. 1994) is a natural consequence of self-absorbed synchrotron radiation from these flows. We also give expressions for the total luminosity of these flows, and the critical accretion rate, M˙crit\dot{M}_{crit}, above which the advection solutions cease to exist. We find that for most cases of interest the equilibrium electron temperature is fairly insensitive to MM, M˙\dot{M}, and parameters in the model. We apply these results to low luminosity black holes in galactic nuclei. We show that the problem posed by Fabian & Canizares (1988) of whether bright elliptical galaxies host dead quasars is resolved, as pointed out recently by Fabian & Rees (1995), by considering advection-dominated flows.Comment: 30 pages, 5 postscript files. Accepted to ApJ. Also available http://cfa-www.harvard.edu/~rohan/publications.htm

    Measuring Feedback Using the Intergalactic Medium State and Evolution Inferred from the Soft X-ray Background

    Full text link
    We explore the intergalactic medium (IGM) as a potential source of the unresolved soft X-ray background (XRB) and the feasibility to extract the IGM state and evolution from XRB observations. We build two analytical models, the continuum field model and the halo model, to calculate the IGM XRB mean flux, angular auto correlation and cross correlation with galaxies. Our results suggest that the IGM may contribute a significant fraction to the unresolved soft XRB flux and correlations. We calibrated non-Gaussian errors estimated against our 5123512^3 moving mesh hydro simulation and estimate that the ROSAT all sky survey plus Sloan galaxy photometric redshift survey would allow a 10\sim 10% accuracy in the IGM XRB-galaxy cross correlation power spectrum measurement for 800<l<5000800<l<5000 and a 20\sim 20% accuracy in the redshift resolved X-ray emissivity-galaxy cross correlation power spectrum measurement for z0.5z\lesssim 0.5. At small scales, non-gravitational heating, e.g. feedback, dominates over gravity and leaves unique signatures in the IGM XRB, which allows a comparable accuracy in the measurement of the amount of non-gravitational heating and the length scales where non-gravitational energy balances gravity.Comment: 17 pages, 5 figures. Will appear on ApJ May issu

    Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning

    Get PDF
    As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability

    Constraints from Gravitational Recoil on the Growth of Supermassive Black Holes at High Redshift

    Full text link
    Recent studies have shown that during their coalescence, binary supermassive black holes (SMBHs) experience a gravitational recoil with velocities of 100 km/s < v(kick) < 600 km/s. These velocities exceed the escape velocity v(esc) from typical dark matter (DM) halos at high-redshift (z>6), and therefore put constraints on scenarios in which early SMBHs grow at the centers of DM halos. Here we quantify these constraints for the most distant known SMBHs, with inferred masses in excess of 10^9 M(sun), powering the bright quasars discovered in the Sloan Digital Sky Survey at z>6. We assume that these SMBHs grew via a combination of accretion and mergers between pre-existing seed BHs in individual progenitor halos, and that mergers between progenitors with v(esc) < v(kick) disrupt the BH growth process. Our results suggest that under these assumptions, the z=6 SMBHs had a phase during which gained mass significantly more rapidly than under an Eddington-limited exponential growth rate.Comment: submitted to ApJ Letters, 5 emulateapj pages with 1 figur

    Cosmological constraints from the cluster contribution to the power spectrum of the soft X-ray background. New evidence for a low sigma_8

    Get PDF
    We use the X-ray power spectrum of the ROSAT all-sky survey in the R6 band (approximately 0.9-1.3 keV) to set an upper limit on the galaxy cluster power spectrum. The cluster power spectrum is modelled with a minimum number of robust assumptions regarding the structure of the clusters. The power spectrum of ROSAT sets an upper limit on the Omega_m-sigma_8 plane which excludes all the models with sigma_8 above sigma_8 = 0.5/(Omega_m^0.38) in a flat LCDM universe. We discuss the possible sources of systematic errors in our conclusions, mainly dominated by the assumed L_x-T relation. Alternatively, this relation could be constrained by using the X-ray power spectrum, if the cosmological model is known. Our conclusions suggest that only models with a low value of sigma_8 (sigma_8 < 0.8 for Omega_m = 0.3) may be compatible with our upper limit. We also find that models predicting lower luminosities in galaxy clusters are favoured. Reconciling our cosmological constraints with these arising by other methods might require either a high entropy floor or wide-spread presence of cooling flows in the low-redshift clusters.Comment: 14 pages, 19 plots (2 as gif files). MNRAS submitte

    Constraining the Lifetime of Quasars from their Spatial Clustering

    Full text link
    The lifetime t_Q of the luminous phase of quasars is constrained by current observations to be between 10^6 and 10^8 years, but is otherwise unkown. We model the quasar luminosity function in detail in the optical and X-ray bands using the Press-Schechter formalism, and show that the expected clustering of quasars depends strongly on their assumed lifetime. We quantify this dependence, and find that existing measurements of the correlation length of quasars are consistent with the range 10^6 < t_Q < 10^8 years. We then show that future measurements of the power spectrum of quasars out to z=3, from the 2dF or Sloan Digital Sky Survey, can significantly improve this constraint, and in principle allow a precise determination of t_Q. We estimate the systematic errors introduced by uncertainties in the modeling of the quasar-halo relationship, as well as by the possible existence of obscured quasars.Comment: ApJ, in press (emulateapj
    corecore