1,493 research outputs found

    Two classes of generalized functions used in nonlocal field theory

    Full text link
    We elucidate the relation between the two ways of formulating causality in nonlocal quantum field theory: using analytic test functions belonging to the space S0S^0 (which is the Fourier transform of the Schwartz space D\mathcal D) and using test functions in the Gelfand-Shilov spaces Sα0S^0_\alpha. We prove that every functional defined on S0S^0 has the same carrier cones as its restrictions to the smaller spaces Sα0S^0_\alpha. As an application of this result, we derive a Paley-Wiener-Schwartz-type theorem for arbitrarily singular generalized functions of tempered growth and obtain the corresponding extension of Vladimirov's algebra of functions holomorphic on a tubular domain.Comment: AMS-LaTeX, 12 pages, no figure

    Axiomatic formulations of nonlocal and noncommutative field theories

    Get PDF
    We analyze functional analytic aspects of axiomatic formulations of nonlocal and noncommutative quantum field theories. In particular, we completely clarify the relation between the asymptotic commutativity condition, which ensures the CPT symmetry and the standard spin-statistics relation for nonlocal fields, and the regularity properties of the retarded Green's functions in momentum space that are required for constructing a scattering theory and deriving reduction formulas. This result is based on a relevant Paley-Wiener-Schwartz-type theorem for analytic functionals. We also discuss the possibility of using analytic test functions to extend the Wightman axioms to noncommutative field theory, where the causal structure with the light cone is replaced by that with the light wedge. We explain some essential peculiarities of deriving the CPT and spin-statistics theorems in this enlarged framework.Comment: LaTeX, 13 pages, no figure

    Spectroscopic features of low-energy excitations in skin nuclei

    Full text link
    Systematic studies of dipole and other multipole excitations in stable and exotic nuclei are discussed theoretically. Exploring the relation of the strengths of low-energy dipole and quadrupole pygmy resonances to the thickness of the neutron (proton) skin a close connection between static and dynamic properties of the nucleus is observed. The fine structure of low-energy dipole strength in 138Ba nucleus is revealed from E1 and spin-flip M1 strengths distributions.Comment: A Talk given at the Int. Symposium 'Forefronts of Researches in Exotic Nuclear Structures - Niigata2010 -', 1-4 March, 2010, Tokamachi, Niigata, Japan; to be published in a volume of Modern Physics Letters A (MPLA)

    Superconducting Phase Domains for Memory Applications

    Get PDF
    In this work we study theoretically the properties of S-F/N-sIS type Josephson junctions in the frame of the quasiclassical Usadel formalism. The structure consists of two superconducting electrodes (S), a tunnel barrier (I), a combined normal metal/ferromagnet (N/F) interlayer and a thin superconducting film (s). We demonstrate the breakdown of a spatial uniformity of the superconducting order in the s-film and its decomposition into domains with a phase shift π\pi . The effect is sensitive to the thickness of the s layer and the widths of the F and N films in the direction along the sIS interface. We predict the existence of a regime where the structure has two energy minima and can be switched between them by an electric current injected laterally into the structure. The state of the system can be non-destructively read by an electric current flowing across the junction

    PCT, spin and statistics, and analytic wave front set

    Full text link
    A new, more general derivation of the spin-statistics and PCT theorems is presented. It uses the notion of the analytic wave front set of (ultra)distributions and, in contrast to the usual approach, covers nonlocal quantum fields. The fields are defined as generalized functions with test functions of compact support in momentum space. The vacuum expectation values are thereby admitted to be arbitrarily singular in their space-time dependence. The local commutativity condition is replaced by an asymptotic commutativity condition, which develops generalizations of the microcausality axiom previously proposed.Comment: LaTeX, 23 pages, no figures. This version is identical to the original published paper, but with corrected typos and slight improvements in the exposition. The proof of Theorem 5 stated in the paper has been published in J. Math. Phys. 45 (2004) 1944-195

    Josephson effect in SIFS-tunnel junctions with domain walls in weak link region

    Get PDF
    We study theoretically the properties of SIFS type Josephson junctions composed of two superconducting (S) electrodes separated by an insulating layer (I) and a ferromagnetic (F) film consisting of periodic magnetic domains structure with antiparallel magnetization directions in neighboring domains. The two-dimensional problem in the weak link area is solved analytically in the framework of the linearized quasiclassical Usadel equations. Based on this solution, the spatial distributions of the critical current density, JC,J_{C}, in the domains and critical current, IC,I_{C}, of SIFS structures are calculated as a function of domain wall parameters, as well as the thickness, dF,d_{F}, and the width, W,W, of the domains. We demonstrate that IC(dF,W)I_{C}(d_{F},W) dependencies exhibit damped oscillations with the ratio of the decay length, Ο1,\xi_{1}, and oscillation period, Ο2,\xi_{2}, being a function of the parameters of the domains, and this ratio may take any value from zero to unity. Thus, we propose a new physical mechanism that may explain the essential difference between Ο1\xi_{1} and Ο2\xi_{2} observed experimentally in various types of SFS Josephson junctions.Comment: The paper will be published in JETP letters vol 101, issue 11, 201

    Protected 0-pi states in SIsFS junctions for Josephson memory and logic

    Get PDF
    We study the peculiarities in current-phase relations (CPR) of the SIsFS junction in the region of 00 to π\pi transition. These CPR consist of two independent branches corresponding to 0−0- and π−\pi- states of the contact. We have found that depending on the transparency of the SIs tunnel barrier the decrease of the s-layer thickness leads to transformation of the CPR shape going in the two possible ways: either one of the branches exists only in discrete intervals of the phase difference φ\varphi or both branches are sinusoidal but differ in the magnitude of their critical currents. We demonstrate that the difference can be as large as 10%10\% under maintaining superconductivity in the s layer. An applicability of these phenomena for memory and logic application is discussed.Comment: 5 pages, 5 figure

    Twisted convolution and Moyal star product of generalized functions

    Full text link
    We consider nuclear function spaces on which the Weyl-Heisenberg group acts continuously and study the basic properties of the twisted convolution product of the functions with the dual space elements. The final theorem characterizes the corresponding algebra of convolution multipliers and shows that it contains all sufficiently rapidly decreasing functionals in the dual space. Consequently, we obtain a general description of the Moyal multiplier algebra of the Fourier-transformed space. The results extend the Weyl symbol calculus beyond the traditional framework of tempered distributions.Comment: LaTeX, 16 pages, no figure

    Towards a Generalized Distribution Formalism for Gauge Quantum Fields

    Full text link
    We prove that the distributions defined on the Gelfand-Shilov spaces, and hence more singular than hyperfunctions, retain the angular localizability property. Specifically, they have uniquely determined support cones. This result enables one to develop a distribution-theoretic techniques suitable for the consistent treatment of quantum fields with arbitrarily singular ultraviolet and infrared behavior. The proofs covering the most general case are based on the use of the theory of plurisubharmonic functions and Hormander's estimates.Comment: 12 p., Department of Theoretical Physics, P.N.Lebedev Physical Institute, Leninsky prosp. 53, Moscow 117924, Russi
    • 

    corecore