1,324 research outputs found

    Two classes of generalized functions used in nonlocal field theory

    Full text link
    We elucidate the relation between the two ways of formulating causality in nonlocal quantum field theory: using analytic test functions belonging to the space S0S^0 (which is the Fourier transform of the Schwartz space D\mathcal D) and using test functions in the Gelfand-Shilov spaces Sα0S^0_\alpha. We prove that every functional defined on S0S^0 has the same carrier cones as its restrictions to the smaller spaces Sα0S^0_\alpha. As an application of this result, we derive a Paley-Wiener-Schwartz-type theorem for arbitrarily singular generalized functions of tempered growth and obtain the corresponding extension of Vladimirov's algebra of functions holomorphic on a tubular domain.Comment: AMS-LaTeX, 12 pages, no figure

    Free Boundary Poisson Bracket Algebra in Ashtekar's Formalism

    Get PDF
    We consider the algebra of spatial diffeomorphisms and gauge transformations in the canonical formalism of General Relativity in the Ashtekar and ADM variables. Modifying the Poisson bracket by including surface terms in accordance with our previous proposal allows us to consider all local functionals as differentiable. We show that closure of the algebra under consideration can be achieved by choosing surface terms in the expressions for the generators prior to imposing any boundary conditions. An essential point is that the Poisson structure in the Ashtekar formalism differs from the canonical one by boundary terms.Comment: 19 pages, Latex, amsfonts.sty, amssymb.st

    Twisted convolution and Moyal star product of generalized functions

    Full text link
    We consider nuclear function spaces on which the Weyl-Heisenberg group acts continuously and study the basic properties of the twisted convolution product of the functions with the dual space elements. The final theorem characterizes the corresponding algebra of convolution multipliers and shows that it contains all sufficiently rapidly decreasing functionals in the dual space. Consequently, we obtain a general description of the Moyal multiplier algebra of the Fourier-transformed space. The results extend the Weyl symbol calculus beyond the traditional framework of tempered distributions.Comment: LaTeX, 16 pages, no figure

    Axiomatic formulations of nonlocal and noncommutative field theories

    Get PDF
    We analyze functional analytic aspects of axiomatic formulations of nonlocal and noncommutative quantum field theories. In particular, we completely clarify the relation between the asymptotic commutativity condition, which ensures the CPT symmetry and the standard spin-statistics relation for nonlocal fields, and the regularity properties of the retarded Green's functions in momentum space that are required for constructing a scattering theory and deriving reduction formulas. This result is based on a relevant Paley-Wiener-Schwartz-type theorem for analytic functionals. We also discuss the possibility of using analytic test functions to extend the Wightman axioms to noncommutative field theory, where the causal structure with the light cone is replaced by that with the light wedge. We explain some essential peculiarities of deriving the CPT and spin-statistics theorems in this enlarged framework.Comment: LaTeX, 13 pages, no figure

    PCT, spin and statistics, and analytic wave front set

    Full text link
    A new, more general derivation of the spin-statistics and PCT theorems is presented. It uses the notion of the analytic wave front set of (ultra)distributions and, in contrast to the usual approach, covers nonlocal quantum fields. The fields are defined as generalized functions with test functions of compact support in momentum space. The vacuum expectation values are thereby admitted to be arbitrarily singular in their space-time dependence. The local commutativity condition is replaced by an asymptotic commutativity condition, which develops generalizations of the microcausality axiom previously proposed.Comment: LaTeX, 23 pages, no figures. This version is identical to the original published paper, but with corrected typos and slight improvements in the exposition. The proof of Theorem 5 stated in the paper has been published in J. Math. Phys. 45 (2004) 1944-195

    Towards a Generalized Distribution Formalism for Gauge Quantum Fields

    Full text link
    We prove that the distributions defined on the Gelfand-Shilov spaces, and hence more singular than hyperfunctions, retain the angular localizability property. Specifically, they have uniquely determined support cones. This result enables one to develop a distribution-theoretic techniques suitable for the consistent treatment of quantum fields with arbitrarily singular ultraviolet and infrared behavior. The proofs covering the most general case are based on the use of the theory of plurisubharmonic functions and Hormander's estimates.Comment: 12 p., Department of Theoretical Physics, P.N.Lebedev Physical Institute, Leninsky prosp. 53, Moscow 117924, Russi

    Beyond Moore's technologies: operation principles of a superconductor alternative

    Full text link
    The predictions of Moore's law are considered by experts to be valid until 2020 giving rise to "post-Moore's" technologies afterwards. Energy efficiency is one of the major challenges in high-performance computing that should be answered. Superconductor digital technology is a promising post-Moore's alternative for the development of supercomputers. In this paper, we consider operation principles of an energy-efficient superconductor logic and memory circuits with a short retrospective review of their evolution. We analyze their shortcomings in respect to computer circuits design. Possible ways of further research are outlined.Comment: OPEN ACCES
    corecore