33 research outputs found

    Existence of the D0-D4 Bound State: a detailed Proof

    Full text link
    We consider the supersymmetric quantum mechanical system which is obtained by dimensionally reducing d=6, N=1 supersymmetric gauge theory with gauge group U(1) and a single charged hypermultiplet. Using the deformation method and ideas introduced by Porrati and Rozenberg, we present a detailed proof of the existence of a normalizable ground state for this system

    Microscopic Derivation of the Ginzburg-Landau Model

    Get PDF
    We present a summary of our recent rigorous derivation of the celebrated Ginzburg–Landau (GL) theory, starting from the microscopic Bardeen–Cooper–Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit is semiclassical in nature, and semiclassical analysis, with minimal regularity assumptions, plays an important part in our proof

    Onsager's Inequality, the Landau-Feynman Ansatz and Superfluidity

    Full text link
    We revisit an inequality due to Onsager, which states that the (quantum) liquid structure factor has an upper bound of the form (const.) x |k|, for not too large modulus of the wave vector k. This inequality implies the validity of the Landau criterion in the theory of superfluidity with a definite, nonzero critical velocity. We prove an auxiliary proposition for general Bose systems, together with which we arrive at a rigorous proof of the inequality for one of the very few soluble examples of an interacting Bose fluid, Girardeau's model. The latter proof demonstrates the importance of the thermodynamic limit of the structure factor, which must be taken initially at k different from 0. It also substantiates very well the heuristic density functional arguments, which are also shown to hold exactly in the limit of large wave-lengths. We also briefly discuss which features of the proof may be present in higher dimensions, as well as some open problems related to superfluidity of trapped gases.Comment: 28 pages, 2 figure, uses revtex

    The BCS Functional for General Pair Interactions

    Full text link
    The Bardeen-Cooper-Schrieffer (BCS) functional has recently received renewed attention as a description of fermionic gases interacting with local pairwise interactions. We present here a rigorous analysis of the BCS functional for general pair interaction potentials. For both zero and positive temperature, we show that the existence of a non-trivial solution of the nonlinear BCS gap equation is equivalent to the existence of a negative eigenvalue of a certain linear operator. From this we conclude the existence of a critical temperature below which the BCS pairing wave function does not vanish identically. For attractive potentials, we prove that the critical temperature is non-zero and exponentially small in the strength of the potential.Comment: Revised Version. To appear in Commun. Math. Phys

    A Minimization Method for Relativistic Electrons in a Mean-Field Approximation of Quantum Electrodynamics

    Full text link
    We study a mean-field relativistic model which is able to describe both the behavior of finitely many spin-1/2 particles like electrons and of the Dirac sea which is self-consistently polarized in the presence of the real particles. The model is derived from the QED Hamiltonian in Coulomb gauge neglecting the photon field. All our results are non-perturbative and mathematically rigorous.Comment: 18 pages, 3 figure

    Renormalization and asymptotic expansion of Dirac's polarized vacuum

    Full text link
    We perform rigorously the charge renormalization of the so-called reduced Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based on the Dirac operator, describes atoms and molecules while taking into account vacuum polarization effects. We consider the total physical density including both the external density of a nucleus and the self-consistent polarization of the Dirac sea, but no `real' electron. We show that it admits an asymptotic expansion to any order in powers of the physical coupling constant \alphaph, provided that the ultraviolet cut-off behaves as \Lambda\sim e^{3\pi(1-Z_3)/2\alphaph}\gg1. The renormalization parameter $

    Stability and Instability of Relativistic Electrons in Classical Electro magnetic Fields

    Full text link
    The stability of matter composed of electrons and static nuclei is investigated for a relativistic dynamics for the electrons given by a suitably projected Dirac operator and with Coulomb interactions. In addition there is an arbitrary classical magnetic field of finite energy. Despite the previously known facts that ordinary nonrelativistic matter with magnetic fields, or relativistic matter without magnetic fields is already unstable when the fine structure constant, is too large it is noteworthy that the combination of the two is still stable provided the projection onto the positive energy states of the Dirac operator, which defines the electron, is chosen properly. A good choice is to include the magnetic field in the definition. A bad choice, which always leads to instability, is the usual one in which the positive energy states are defined by the free Dirac operator. Both assertions are proved here.Comment: LaTeX fil

    Unique Solutions to Hartree-Fock Equations for Closed Shell Atoms

    Full text link
    In this paper we study the problem of uniqueness of solutions to the Hartree and Hartree-Fock equations of atoms. We show, for example, that the Hartree-Fock ground state of a closed shell atom is unique provided the atomic number ZZ is sufficiently large compared to the number NN of electrons. More specifically, a two-electron atom with atomic number Z≥35Z\geq 35 has a unique Hartree-Fock ground state given by two orbitals with opposite spins and identical spatial wave functions. This statement is wrong for some Z>1Z>1, which exhibits a phase segregation.Comment: 18 page
    corecore