742 research outputs found
Statistical Learning of Arbitrary Computable Classifiers
Statistical learning theory chiefly studies restricted hypothesis classes,
particularly those with finite Vapnik-Chervonenkis (VC) dimension. The
fundamental quantity of interest is the sample complexity: the number of
samples required to learn to a specified level of accuracy. Here we consider
learning over the set of all computable labeling functions. Since the
VC-dimension is infinite and a priori (uniform) bounds on the number of samples
are impossible, we let the learning algorithm decide when it has seen
sufficient samples to have learned. We first show that learning in this setting
is indeed possible, and develop a learning algorithm. We then show, however,
that bounding sample complexity independently of the distribution is
impossible. Notably, this impossibility is entirely due to the requirement that
the learning algorithm be computable, and not due to the statistical nature of
the problem.Comment: Expanded the section on prior work and added reference
Robust Stochastic Chemical Reaction Networks and Bounded Tau-Leaping
The behavior of some stochastic chemical reaction networks is largely unaffected by slight inaccuracies in reaction rates. We formalize the robustness of state probabilities to reaction rate deviations, and describe a formal connection between robustness and efficiency of simulation. Without robustness guarantees, stochastic simulation seems to require computational time proportional to the total number of reaction events. Even if the concentration (molecular count per volume) stays bounded, the number of reaction events can be linear in the duration of simulated time and total molecular count. We show that the behavior of robust systems can be predicted such that the computational work scales linearly with the duration of simulated time and concentration, and only polylogarithmically in the total molecular count. Thus our asymptotic analysis captures the dramatic speedup when molecular counts are large, and shows that for bounded concentrations the computation time is essentially invariant with molecular count. Finally, by noticing that even robust stochastic chemical reaction networks are capable of embedding complex computational problems, we argue that the linear dependence on simulated time and concentration is likely optimal
Stable Leader Election in Population Protocols Requires Linear Time
A population protocol *stably elects a leader* if, for all , starting from
an initial configuration with agents each in an identical state, with
probability 1 it reaches a configuration that is correct (exactly
one agent is in a special leader state ) and stable (every configuration
reachable from also has a single agent in state ). We show
that any population protocol that stably elects a leader requires
expected "parallel time" --- expected total pairwise interactions
--- to reach such a stable configuration. Our result also informs the
understanding of the time complexity of chemical self-organization by showing
an essential difficulty in generating exact quantities of molecular species
quickly.Comment: accepted to Distributed Computing special issue of invited papers
from DISC 2015; significantly revised proof structure and intuitive
explanation
Approximate Self-Assembly of the Sierpinski Triangle
The Tile Assembly Model is a Turing universal model that Winfree introduced
in order to study the nanoscale self-assembly of complex (typically aperiodic)
DNA crystals. Winfree exhibited a self-assembly that tiles the first quadrant
of the Cartesian plane with specially labeled tiles appearing at exactly the
positions of points in the Sierpinski triangle. More recently, Lathrop, Lutz,
and Summers proved that the Sierpinski triangle cannot self-assemble in the
"strict" sense in which tiles are not allowed to appear at positions outside
the target structure. Here we investigate the strict self-assembly of sets that
approximate the Sierpinski triangle. We show that every set that does strictly
self-assemble disagrees with the Sierpinski triangle on a set with fractal
dimension at least that of the Sierpinski triangle (roughly 1.585), and that no
subset of the Sierpinski triangle with fractal dimension greater than 1
strictly self-assembles. We show that our bounds are tight, even when
restricted to supersets of the Sierpinski triangle, by presenting a strict
self-assembly that adds communication fibers to the fractal structure without
disturbing it. To verify this strict self-assembly we develop a generalization
of the local determinism method of Soloveichik and Winfree
- …