3 research outputs found

    Molecular characterization of extended spectrum cephalosporin resistant Escherichia coli isolated from livestock and in-contact humans in Southeast Nigeria

    Get PDF
    The rise in antimicrobial resistance (AMR) in bacteria is reducing therapeutic options for livestock and human health, with a paucity of information globally. To fill this gap, a One-Health approach was taken by sampling livestock on farms (n = 52), abattoir (n = 8), and animal markets (n = 10), and in-contact humans in Southeast Nigeria. Extended spectrum cephalosporin (ESC)-resistant (ESC-R) Escherichia coli was selectively cultured from 975 healthy livestock faecal swabs, and hand swabs from in-contact humans. Antimicrobial susceptibility testing (AST) was performed on all ESC-R E. coli. For isolates showing a multi-drug resistance (MDR) phenotype (n = 196), quantitative real-time PCR (qPCR) was performed for confirmation of extended-spectrum β-lactamase (ESBL) and carbapenemase genes. Whole-genome sequencing (WGS) was performed on a subset (n = 157) for detailed molecular characterisation. The results showed ESC-R E. coli was present in 41.2% of samples, with AST results indicating 48.8% of isolates were phenotypically MDR. qPCR confirmed presence of ESBL genes, with blaCTX-M present in all but others in a subset [blaTEM (62.8%) and blaSHV (0.5%)] of isolates; none harboured transferable carbapenemase genes. Multi-locus sequence typing identified 34 Sequence Types (ST) distributed among different sampling levels; ST196 carrying blaCTX-M-55 was predominant in chickens. Large numbers of single nucleotide polymorphisms (SNPs) in the core genome of isolates, even within the same clade by phylogenetic analysis, indicated high genetic diversity. AMR genotyping indicated the predominant blaCTX-M variant was blaCTX-M-15 (87.9%), although blaCTX-M-55, blaCTX-M-64, and blaCTX-M-65 were present; it was notable that blaCTX-M-1, common in livestock, was absent. Other predominant AMR genes included: sul2, qnrS1, strB, blaTEM-1b, tetA-v2, and dfrA14, with prevalence varying according to host livestock species. A blaCTX-M-15 harbouring plasmid from livestock isolates in Ebonyi showed high sequence identity to one from river/sewage water in India, indicating this ESBL plasmid to be globally disseminated, being present beyond the river environment. In conclusion, ESC-R E. coli was widespread in livestock and in-contact humans from Southeast Nigeria. WGS data indicated the isolates were genetically highly diverse, probably representing true diversity of wild type E. coli; they were likely to be MDR with several harbouring blaCTX-M-15. Surprisingly, human isolates had highest numbers of AMR genes and pigs the least

    Molecular characterization of extended spectrum cephalosporin resistant Escherichia coli isolated from livestock and in-contact humans in Southeast Nigeria

    Get PDF
    The rise in antimicrobial resistance (AMR) in bacteria is reducing therapeutic options for livestock and human health, with a paucity of information globally. To fill this gap, a One-Health approach was taken by sampling livestock on farms (n = 52), abattoir (n = 8), and animal markets (n = 10), and in-contact humans in Southeast Nigeria. Extended spectrum cephalosporin (ESC)-resistant (ESC-R) Escherichia coli was selectively cultured from 975 healthy livestock faecal swabs, and hand swabs from in-contact humans. Antimicrobial susceptibility testing (AST) was performed on all ESC-R E. coli. For isolates showing a multi-drug resistance (MDR) phenotype (n = 196), quantitative real-time PCR (qPCR) was performed for confirmation of extended-spectrum β-lactamase (ESBL) and carbapenemase genes. Whole-genome sequencing (WGS) was performed on a subset (n = 157) for detailed molecular characterisation. The results showed ESC-R E. coli was present in 41.2% of samples, with AST results indicating 48.8% of isolates were phenotypically MDR. qPCR confirmed presence of ESBL genes, with bla(CTX-M) present in all but others in a subset [bla(TEM) (62.8%) and bla(SHV) (0.5%)] of isolates; none harboured transferable carbapenemase genes. Multi-locus sequence typing identified 34 Sequence Types (ST) distributed among different sampling levels; ST196 carrying bla(CTX-M-55) was predominant in chickens. Large numbers of single nucleotide polymorphisms (SNPs) in the core genome of isolates, even within the same clade by phylogenetic analysis, indicated high genetic diversity. AMR genotyping indicated the predominant bla(CTX-M) variant was bla(CTX-M-15) (87.9%), although bla(CTX-M-55), bla(CTX-M-64,) and bla(CTX-M-65) were present; it was notable that bla(CTX-M-1), common in livestock, was absent. Other predominant AMR genes included: sul2, qnrS1, strB, bla(TEM-1b), tetA-v2, and dfrA14, with prevalence varying according to host livestock species. A bla(CTX-M-15) harbouring plasmid from livestock isolates in Ebonyi showed high sequence identity to one from river/sewage water in India, indicating this ESBL plasmid to be globally disseminated, being present beyond the river environment. In conclusion, ESC-R E. coli was widespread in livestock and in-contact humans from Southeast Nigeria. WGS data indicated the isolates were genetically highly diverse, probably representing true diversity of wild type E. coli; they were likely to be MDR with several harbouring bla(CTX-M-15.) Surprisingly, human isolates had highest numbers of AMR genes and pigs the least

    Molecular epidemiology, genetic diversity and antimicrobial resistance of Staphylococcus aureus isolated from chicken and pig carcasses, and carcass handlers.

    No full text
    The epidemiology of Staphylococcus aureus in food animals, associated products, and their zoonotic potential in Nigeria are poorly understood. This study aimed to provide data on the prevalence, genetic characteristics and antimicrobial resistance of S. aureus isolated from chicken and pig carcasses, and persons in contact with the carcasses at slaughterhouses in Nigeria. Surface swabs were collected randomly from 600 chicken and 600 pig carcasses. Nasal swabs were collected from 45 workers in chicken slaughterhouses and 45 pig slaughterhouse workers. S. aureus isolates were analyzed by spa typing. They were also examined for presence of the Panton-Valentine Leucocidin (PVL) and mecA genes, as well as for antimicrobial resistance phenotype. Overall, 53 S. aureus isolates were recovered (28 from chicken carcasses, 17 from pig carcasses, 5 from chicken carcass handlers and 3 from pig carcass handlers). Among the isolates, 19 (35.8%) were PVL-positive and 12 (22.6%) carried the mecA gene. The 53 isolates belonged to 19 spa types. The Based Upon Repeat Pattern (BURP) algorithm separated the isolates into 2 spa-clonal complexes (spa-CC) and 9 singletons including 2 novel spa types (t18345 and t18346). The clonal complexes (CC) detected were CC1, CC5, CC8, CC15, CC88 and CC152. CC15-related isolates represented by spa type t084 (32.1%) and CC5 represented by spa type t311 (35.3%) predominated among isolates from chicken carcasses/ handlers, and pig carcasses/ handlers, respectively. Multidrug resistance exhibited by all the CC except CC8, was observed among isolates from chicken carcasses (64.3%), pig carcasses (41.2%), handlers of chicken meat (40.0%) and handlers of pork (33.3%). All the CC showed varying degrees of resistance to tetracycline while CC15 and CC5 exhibited the highest resistance to sulphamethoxazole/trimethoprim and erythromycin, respectively. The predominant antimicrobial resistance pattern observed was penicillin-tetracycline-sulphamethoxazole/trimethoprim (PEN-TET-SXT). In conclusion, food animals processed in Enugu State in Southeast Nigeria are potential vehicles for transmission of PVL-positive multiple-drug resistant S. aureus and methicillin-resistant S. aureus from farm to slaughterhouse and potentially to the human population. Public health intervention programs at pre- and post-slaughter stages should be considered in Nigerian slaughterhouses
    corecore