25,584 research outputs found

    Tectonic history of the terrestrial planets

    Get PDF
    It is impossible in a single brief summary to convey the full range of research results that have come from this project over the last 13 years. The sweep of subjects covered ranges widely over the broad areas of the thermal and tectonic evolution of the terrestrial planets. A full list of all publications supported by this grant is presented. The list includes 48 published journal articles, 2 papers currently in press, 3 chapters of books, 4 M.I.T. theses, 1 technical report, and 107 published abstracts and extended abstracts. All of these publications were submitted separately to NASA at the time of publication or submission

    Secular cooling of Earth as a source of intraplate stress

    Get PDF
    The once popular idea that changes in planetary volume play an important role in terrestrial orogeny and tectonics was generally discarded with the acceptance of plate tectonics. It is nonetheless likely that the Earth has been steadily cooling over the past 3-4 billion years, and the global contraction that accompanied such cooling would have led to a secular decrease in the radius of curvature of the plates. The implications of this global cooling and contraction are explored here for the intraplate stress field and the evolution of continental plates

    Some aspects of core formation in Mercury

    Get PDF
    An evaluation of existing theories on the existence of the planet's metallic core is presented. Topics considered are: (1) magnetic fields; (2) surface geology; (3) cosmochemical models

    The tectonics of Venus: An overview

    Get PDF
    While the Pioneer Venus altimeter, Earth-based radar observatories, and the Venera 15-16 orbital imaging radars provided views of large-scale tectonic features on Venus at ever-increasing resolution, the radar images from Magellan constitute an improvement in resolution of at least an order of magnitude over the best previously available. A summary of early Magellan observations of tectonic features on Venus was published, but data available at that time were restricted to the first month of mapping and represented only about 15 percent of the surface of the planet. Magellan images and altimetry are now available for more than 95 percent of the Venus surface. Thus a more global perspective may be taken on the styles and distribution of lithospheric deformation on Venus and their implications for the tectonic history of the planet

    From Chemistry to Functionality: Trends for the Length Dependence of the Thermopower in Molecular Junctions

    Full text link
    We present a systematic ab-initio study of the length dependence of the thermopower in molecular junctions. The systems under consideration are small saturated and conjugated molecular chains of varying length attached to gold electrodes via a number of different binding groups. Different scenarios are observed: linearly increasing and decreasing thermopower as function of the chain length as well as positive and negative values for the contact thermopower. Also deviation from the linear behaviour is found. The trends can be explained by details of the transmission, in particular the presence, position and shape of resonances from gateway states. We find that these gateway states do not only determine the contact thermopower, but can also have a large influence on the length-dependence itself. This demonstrates that simple models for electron transport do not apply in general and that chemical trends are hard to predict. Furthermore, we discuss the limits of our approach based on Density Functional Theory and compare to more sophisticated methods like self-energy corrections and the GW theory

    Condition for tripartite entanglement

    Get PDF
    We propose a scheme for classifying the entanglement of a tripartite pure qubit state. This classification scheme consists of an ordered list of seven elements. These elements are the Cayley hyper-determinant, and its six associated 2×22 \times 2 subdeterminants. In particular we show that this classification provides a necessary and sufficient condition for separability.Comment: 8 pages, to appear in the Proceedings of "Quantum Theory and Symmetries 7", Prague, Aug 7-13, 201

    Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    Get PDF
    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere

    The gabbro-eclogite phase transition and the elevation of mountain belts on Venus

    Get PDF
    Among the four mountain belts surrounding Lakshmi Planum, Maxwell Montes is the highest and stands up to 11 km above the mean planetary radius and 7 km above Lakshmi Planum. The bulk composition and radioactive heat production of the crust on Venus, where measured, are similar to those of terrestrial tholeiitic basalt. Because the thickness of the low-density crust may be limited by the gabbro-garnet granulite-eclogite phase transitions, the 7-11 km maximum elevation of Maxwell Montes is difficult to understand except in the unlikely situation that the crust contains a large volume of magma. A possible explanation is that the base of the crust is not in phase equilibrium. It has been suggested that under completely dry conditions, the gabbro-eclogite phase transition takes place by solid-state diffusion and may require a geologically significant time to run to completion. Solid-state diffusion is a strongly temperature-dependent process. In this paper we solve the thermal evolution of the mountain belt to attempt to constrain the depth of the gabbro-eclogite transition and thus to assess this hypothesis quantitatively. The one-dimensional heat equation is solved numerically by a finite difference approximation. The deformation of the horizontally shortening crustal and mantle portions of the thermal boundary layer is assumed to occur by pure shear, and therefore the vertical velocity is given by the product of the horizontal strain rate and depth

    Understanding the length dependence of molecular junction thermopower

    Full text link
    Thermopower of molecular junctions is sensitive to details in the junction and may increase, decrease, or saturate with increasing chain length, depending on the system. Using McConnell's theory for exponentially suppressed transport together with a simple and easily interpretable tight binding model, we show how these different behaviors depend on the molecular backbone and its binding to the contacts. We distinguish between resonances from binding groups or undercoordinated electrode atoms, and those from the periodic backbone. It is demonstrated that while the former gives a length-independent contribution to the thermopower, possibly changing its sign, the latter determines its length dependence. This means that the question of which orbitals from the periodic chain that dominate the transport should not be inferred from the sign of the thermopower but from its length dependence. We find that the same molecular backbone can, in principle, show four qualitatively different thermopower trends depending on the binding group: It can be positive or negative for short chains, and it can either increase or decrease with length
    corecore