5 research outputs found

    Interactions between Candida albicans and Enterococcus faecalis in an Organotypic Oral Epithelial Model

    No full text
    Candida albicans as an opportunistic pathogen exploits the host immune system and causes a variety of life-threatening infections. The polymorphic nature of this fungus gives it tremendous advantage to breach mucosal barriers and cause oral and disseminated infections. Similar to C. albicans, Enterococcus faecalis is a major opportunistic pathogen, which is of critical concern in immunocompromised patients. There is increasing evidence that E. faecalis co-exists with C. albicans in the human body in disease samples. While the interactive profiles between these two organisms have been studied on abiotic substrates and mouse models, studies on their interactions on human oral mucosal surfaces are non-existent. Here, for the first time, we comprehensively characterized the interactive profiles between laboratory and clinical isolates of C. albicans (SC5314 and BF1) and E. faecalis (OG1RF and P52S) on an organotypic oral mucosal model. Our results demonstrated that the dual species biofilms resulted in profound surface erosion and significantly increased microbial invasion into mucosal compartments, compared to either species alone. Notably, several genes of C. albicans involved in tissue adhesion, hyphal formation, fungal invasion, and biofilm formation were significantly upregulated in the presence of E. faecalis. By contrast, E. faecalis genes involved in quorum sensing, biofilm formation, virulence, and mammalian cell invasion were downregulated. This study highlights the synergistic cross-kingdom interactions between E. faecalis and C. albicans in mucosal tissue invasion

    A Novel Small Molecule, 1,3-di-m-tolyl-urea, Inhibits and Disrupts Multispecies Oral Biofilms

    No full text
    An imbalance of homeostasis between the microbial communities and the host system leads to dysbiosis in oral micro flora. DMTU (1,3-di-m-tolyl-urea) is a biocompatible compound that was shown to inhibit Streptococcus mutans biofilm by inhibiting its communication system (quorum sensing). Here, we hypothesized that DMTU is able to inhibit multispecies biofilms. We developed a multispecies oral biofilm model, comprising an early colonizer Streptococcus gordonii, a bridge colonizer Fusobacterium nucleatum, and late colonizers Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. We performed comprehensive investigations to demonstrate the effect of DMTU on planktonic cells and biofilms. Our findings showed that DMTU inhibits and disrupts multispecies biofilms without bactericidal effects. Mechanistic studies revealed a significant down regulation of biofilm and virulence-related genes in P. gingivalis. Taken together, our study highlights the potential of DMTU to inhibit polymicrobial biofilm communities and their virulence

    A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm development

    No full text
    Candida albicans is an opportunistic fungal pathogen that is highly resistant to contemporary antifungals, due to their biofilm lifestyle. The ability of C. albicans to invade human tissues is due to its filamentation. Therefore, inhibition of biofilms and filamentation of the yeast are high value targets to develop the next-generation antifungals. Curcumin (CU) is a natural polyphenol with excellent pharmacological attributes, but limitations such as poor solubility, acid, and enzyme tolerance have impeded its practical utility. Sophorolipids (SL) are biologically-derived surfactants that serve as efficient carriers of hydrophobic molecules such as curcumin into biofilms. Here, we synthesized a curcumin-sophorolipid nanocomplex (CU-SL), and comprehensively evaluated its effects on C. albicans biofilms and filamentation. Our results demonstrated that sub-inhibitory concentration of CU-SL (9.37 µg/mL) significantly inhibited fungal adhesion to substrates, and subsequent biofilm development, maturation, and filamentation. This effect was associated with significant downregulation of a select group of biofilm, adhesins, and hyphal regulatory genes. In conclusion, the curcumin-sophorolipid nanocomplex is a potent inhibitor of the two major virulence attributes of C. albicans, biofilm formation and filamentation, thus highlighting its promise as a putative anti-fungal agent with biofilm penetrative potential

    Trans-Cinnamaldehyde Eluting Porous Silicon Microparticles Mitigate Cariogenic Biofilms

    No full text
    Dental caries, a preventable disease, is caused by highly-adherent, acid-producing biofilms composed of bacteria and yeasts. Current caries-preventive approaches are ineffective in controlling biofilm development. Recent studies demonstrate definite advantages in using natural compounds such as trans-cinnamaldehyde in thwarting biofilm assembly, and yet, the remarkable difficulty in delivering such hydrophobic bioactive molecules prevents further development. To address this critical challenge, we have developed an innovative platform composed of components with a proven track record of safety. We fabricated and thoroughly characterised porous silicon (pSi) microparticles to carry and deliver the natural phenyl propanoid trans-cinnamaldehyde (TC). We investigated its effects on preventing the development of cross-kingdom biofilms (Streptococcus mutans and Candida albicans), typical of dental caries found in children. The prepared pSi microparticles were roughly cubic in structure with 70–75% porosity, to which the TC (pSi-TC) was loaded with about 45% efficiency. The pSi-TC particles exhibited a controlled release of the cargo over a 14-day period. Notably, pSi-TC significantly inhibited biofilms, specifically downregulating the glucan synthesis pathways, leading to reduced adhesion to the substrate. Acid production, a vital virulent trait for caries development, was also hindered by pSi-TC. This pioneering study highlights the potential to develop the novel pSi-TC as a dental caries-preventive material

    Small molecule based anti-virulence approaches against Candida albicans infections

    No full text
    Fungi are considered “silent killers” due to the difficulty of, and delays in diagnosis of infections and lack of effective antifungals. This challenge is compounded by the fact that being eukaryotes, fungi share several similarities with human cellular targets, creating obstacles to drug discovery. Candida albicans, a ubiquitous microbe in the human body is well-known for its role as an opportunistic pathogen in immunosuppressed people. Significantly, C. albicans is resistant to all the three classes of antifungals that are currently clinically available. Over the past few years, a paradigm shift has been recommended in the management of C. albicans infections, wherein anti-virulence strategies are considered an alternative to the discovery of new antimycotics. Small molecules, with a molecular weight <900 Daltons, can easily permeate the cell membrane and modulate the signal transduction pathways to elicit desired virulence inhibitory actions against pathogens. This review dissects in-depth, the discoveries that have been made with small-molecule anti-virulence approaches to tackle C. albicans infections
    corecore