58 research outputs found
He-broadening and shift coefficients of water vapor lines in infrared spectral region
The water vapor line broadening and shift coefficients in the Ξ½1+Ξ½2, Ξ½2+Ξ½3, Ξ½1+Ξ½3, 2Ξ½3, 2Ξ½1, 2Ξ½2+Ξ½3, and Ξ½1+2Ξ½2 vibrational bands induced by helium pressure were measured using a Bruker IFS 125HR spectrometer. The vibrational bands 2Ξ½3 and Ξ½1+2Ξ½2 were investigated for the first time. The interaction potential used in the calculations of broadening and shift coefficients was chosen as the sum of pair potentials, which were modeled by the Lennard-Jones (6-12) potentials. The vibrational and rotational contributions to this potential were obtained by use of the intermolecular potential parameters and intramolecular parameters of H2O molecule. The calculated values of the broadening and shift coefficients were compared with the experimental data. Β© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
Investigation of interaction of carbon dioxide with aerogels nanopores
The absorption spectrum of 2 0 0 12 β 0 0 0 01 band of carbon dioxide, confined in 20 nm nanopores of silica aerogel, was measured with help of a Bruker IFS 125 HR Fourier transform spectrometer at room temperature and a spectral resolution of 0.01 cm-1. The obtained dependence of spectral line half-width values on rotational quantum numbers was studied and compared with data available in the literature. Β© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
Khalifa University Reachback Program Supporting Prevention of Illicit Nuclear and Radiological Material Smuggling in the United Arab Emirates
Trafficking of Illicit nuclear or radiological materials is a global threat which can involve and adversely affect any country. Ultimately, it is the responsibility of each state to prevent and combat illicit nuclear trafficking by screening all cargo and travelers entering, exiting, and transiting through its borders. As a part of the national radiation detection infrastructure of the United Arab Emirates (UAE), a reachback program was established at Khalifa University (KU) to provide capabilities for adjudication of radiation alarms at Khalifa Port and other radiation portal monitor (RPM) locations. In addition to the main mission, KU Reachback aims to educate and prepare local talent to lead these vital efforts in the future. This is particularly important because the UAE, similar to other newcomers to the nuclear industry, faces human capital challenges which can be addressed using domestic or regional solutions
Parameters of broadening of water molecule absorption lines by argon derived using different line profile models
The water vapor absorption spectrum was measured in the spectral region 6700β7650 cmβ1 with argon as a buffer gas. The room-temperature spectrum was measured using a Bruker IFS 125-HR Fourier Transform Spectrometer with high signal-to-noise ratio, with a spectral resolution of 0.01 cmβ1, at argon pressures from 0 to 0.9 atm. The H2O absorption spectral line parameters are derived by fitting two line shape profiles (Voigt and speed-dependent Voigt) to the experimental spectrum. It is shown that the use of speed-dependent Voigt profile provides the best agreement with experimental data
Modification of the experimental setup of the FTIR spectrometer and thirty-meter optical cell for measurements of weak selective and nonselective absorptions
The improvement of the experimental setup based on a Fourier spectrometer Bruker IFS-125 and a 30-meter multipass optical cell is described. The improvement includes the cell equipment with a system of automated adjustment of the number of beam passes without cell depressurization and ensures the cell work at high temperatures
Π‘ΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΎΠ²-ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ Π² ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎ-ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΈΡΡΠ΅ΠΌΠ°Ρ
The aim of the research is the analytical description of one of the modules of the organizational and technical system, designed for the formation of sensual images and their transformation into concepts-representations. Within the framework of the computer paradigm in organizational and technical systems, such obvious principles as digital representation of information and its processing with the use of algorithms implemented by computing means are used. The success of the computer paradigm application is certainly impressive, but there are clearly situations in which human consciousness operates much more efficiently, interpreting the unconventional, the new situation with the aim of formulating an adequate response. In this regard, attempts to model some mechanisms of human consciousness within the framework of the cognitive approach are of great interest. In accordance with the ideas of cognitive theory in the human brain, images (schemes, categories, gestalts, systems, archetypes, etc.) are formed and then are processed. It is assumed that the resulting images are those effects that are then processed, perceived, used by the organizational and technical system for the formation of concepts-representations. Concept representation is a generalized sensual-visual image of the object or phenomenon and is characterized by a number of features, the number of which may vary in the course of the system operation.The method of Markov chains is used to study the statistical characteristics of the mechanism of formation of concepts-representations. It is assumed that the formation of sensual images and their transformation into concepts-representations occurs at random moments of time. The module of concept-representation formation can be in one of two states that correspond to the logic of its functioning β either its state does not change, or when a new concept-representation is formed, the state of the module changes. A stochastic matrix of one step transient probabilities, characterizing changes in the module states and corresponding initial probabilities of states is introduced. Because of application of the theory of Markov chains with two states, the relations for the probabilities of the module states through an arbitrary number of steps, as well as asymptotic expressions for the probabilities of states are given. The graphs of the module state probabilities change depending on the number of circuit steps, initial probabilities, probabilities of one-step transitions of the stochastic matrix are presented.Analytical expressions and corresponding graphs for the average number of stays in the module of a particular state are obtained, which are interpreted as the average number of corrections of essential features of concepts-representations. The asymptotic relations for the number of corrections are obtained, and the error of the approximate asymptotic relations is estimated.Thus, the paper formulates a very general model of the random process of formation of sensual images and their transformation into concepts-representations. The key task of the practical application of the model is to analyze the logic of the functioning of a particular organizational and technical system and to determine on this basis the parameters appearing in the model.Π¦Π΅Π»ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΌΠΎΠ΄ΡΠ»Π΅ΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎ-ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π»Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ²ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ² ΠΈ ΠΈΡ
ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡ-ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ. Π ΡΠ°ΠΌΠΊΠ°Ρ
ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΠΏΠ°ΡΠ°Π΄ΠΈΠ³ΠΌΡ Π² ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎ-ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΡΡΠ΅ΠΌΠ°Ρ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΠ°ΠΊΠΈΠ΅ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΡΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ, ΠΊΠ°ΠΊ ΡΠΈΡΡΠΎΠ²ΠΎΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΈ Π΅Π΅ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ° Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ², ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΠΌΡΡ
Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈΒ ΡΡΠ΅Π΄ΡΡΠ²Π°ΠΌΠΈ. Π£ΡΠΏΠ΅Ρ
ΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΠΏΠ°ΡΠ°Π΄ΠΈΠ³ΠΌΡ ΡΠ²Π»ΡΡΡΡΡ, Π±Π΅Π·ΡΡΠ»ΠΎΠ²Π½ΠΎ, Π²ΠΏΠ΅ΡΠ°ΡΠ»ΡΡΡΠΈΠΌΠΈ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠ°ΠΊΠΈΠ΅ ΡΠΈΡΡΠ°ΡΠΈΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ
ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠ·Π½Π°Π½ΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½Π΅Π΅, ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠΈΡΡΡ Π½Π΅ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠ΅, Π½ΠΎΠ²ΡΠ΅ ΡΠΈΡΡΠ°ΡΠΈΠΈ Ρ ΡΠ΅Π»ΡΡ Π²ΡΡΠ°Π±ΠΎΡΠΊΠΈ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π°Π³ΠΈΡΠΎΠ²Π°Π½ΠΈΡ. Π ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΠΈΠΌ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΠΏΠΎΠΏΡΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠ·Π½Π°Π½ΠΈΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΊΠΎΠ³Π½ΠΈΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π°. Π ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡΠΌΠΈ ΠΊΠΎΠ³Π½ΠΈΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ Π² ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠΌ ΠΌΠΎΠ·Π³Π΅ ΡΠΎΡΠΌΠΈΡΡΡΡΡΡ ΠΎΠ±ΡΠ°Π·Ρ (ΡΡ
Π΅ΠΌΡ, ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ, Π³Π΅ΡΡΠ°Π»ΡΡΡ, ΡΠΈΡΡΠ΅ΠΌΡ, Π°ΡΡ
Π΅ΡΠΈΠΏΡ ΠΈ Ρ.ΠΏ.), ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π°ΡΠ΅ΠΌ ΠΎΠ±ΡΠ°Π±Π°ΡΡΠ²Π°ΡΡΡΡ. ΠΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ, ΡΡΠΎ Π²ΠΎΠ·Π½ΠΈΠΊΡΠΈΠ΅ ΠΎΠ±ΡΠ°Π·Ρ, ΡΠ²Π»ΡΡΡΡΡ ΡΠ΅ΠΌΠΈ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π°ΡΠ΅ΠΌ ΠΎΠ±ΡΠ°Π±Π°ΡΡΠ²Π°ΡΡΡΡ, Π²ΠΎΡΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡΡΡ, ΠΏΠ΅ΡΠ΅ΡΠ°Π±Π°ΡΡΠ²Π°ΡΡΡΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎ-ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ Π΄Π»Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΎΠ²-ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ. ΠΠΎΠ½ΡΠ΅ΠΏΡ-ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½Π½ΡΠΌ ΡΡΠ²ΡΡΠ²Π΅Π½Π½ΠΎ-Π½Π°Π³Π»ΡΠ΄Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ° ΠΈΠ»ΠΈ ΡΠ²Π»Π΅Π½ΠΈΡ ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΡΡΠ΄ΠΎΠΌ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ², ΡΠΈΡΠ»ΠΎ ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠΎΠΆΠ΅Ρ ΠΌΠ΅Π½ΡΡΡΡΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ.ΠΠ»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠ° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΎΠ²-ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ Π² ΡΠ°Π±ΠΎΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ ΠΌΠ°ΡΠΊΠΎΠ²ΡΠΊΠΈΡ
ΡΠ΅ΠΏΠ΅ΠΉ. ΠΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ, ΡΡΠΎ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ²ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ² ΠΈ ΠΈΡ
ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡ-ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Π² ΡΠ»ΡΡΠ°ΠΉΠ½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠΎΠ΄ΡΠ»Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΎΠ²-ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ΅Ρ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡΡ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· Π΄Π²ΡΡ
ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ, ΠΎΡΠ²Π΅ΡΠ°ΡΡΠΈΡ
Π»ΠΎΠ³ΠΈΠΊΠ΅ Π΅Π³ΠΎ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ β Π»ΠΈΠ±ΠΎ Π΅Π³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ, Π»ΠΈΠ±ΠΎ ΠΏΡΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠ°-ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ. ΠΠ²Π΅Π΄Π΅Π½Π° Π² ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΡ
Π°ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠ°ΡΡΠΈΡΠ° ΠΎΠ΄Π½ΠΎΡΠ°Π³ΠΎΠ²ΡΡ
ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π½ΡΡ
Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ΅ΠΉ, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠ°Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π½Π°ΡΠ°Π»ΡΠ½ΡΠ΅ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ.Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΎΡΠΈΠΈ ΠΌΠ°ΡΠΊΠΎΠ²ΡΠΊΠΈΡ
ΡΠ΅ΠΏΠ΅ΠΉ Ρ Π΄Π²ΡΠΌΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡΠΌΠΈ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π΄Π»Ρ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠ΅ΡΠ΅Π· ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΡΠ°Π³ΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ Π°ΡΠΈΠΌΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠΈΡΠ»Π° ΡΠ°Π³ΠΎΠ² ΡΠ΅ΠΏΠΈ, Π½Π°ΡΠ°Π»ΡΠ½ΡΡ
Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ΅ΠΉ, Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ΅ΠΉ ΠΎΠ΄Π½ΠΎΡΠ°Π³ΠΎΠ²ΡΡ
ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΠΎΠ² ΡΡΠΎΡ
Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΡ. ΠΠΎΠ»ΡΡΠ΅Π½ΡΒ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΈ Π΄Π»Ρ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΡΠΈΡΠ»Π° ΠΏΡΠ΅Π±ΡΠ²Π°Π½ΠΈΠΉ ΠΌΠΎΠ΄ΡΠ»Ρ Π² ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠΈΡΡΡΡΡΡ ΠΊΠ°ΠΊ ΡΡΠ΅Π΄Π½Π΅Π΅ ΡΠΈΡΠ»ΠΎ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠΉ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΎΠ²-ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ. ΠΠΎΠ»ΡΡΠ΅Π½Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΡΠΈΡΠ»Π° ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π°Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΡΡ
Π°ΡΠΈΠΌΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ.Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π² ΡΠ°Π±ΠΎΡΠ΅ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π° Π²Π΅ΡΡΠΌΠ° ΠΎΠ±ΡΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ²ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ² ΠΈ ΠΈΡ
ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡ-ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ. ΠΠ»ΡΡΠ΅Π²ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π°Π½Π°Π»ΠΈΠ· Π»ΠΎΠ³ΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎ-ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π° ΡΡΠΎΠΉ ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΈΠ³ΡΡΠΈΡΡΡΡΠΈΡ
Π² ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ²
ΠΠΠ’ΠΠΠΠ’ΠΠ§ΠΠ‘ΠΠΠ ΠΠ ΠΠΠ¦ΠΠΠ« ΠΠΠ‘Π’Π ΠΠΠΠΠ― Π ΠΠΠ’ΠΠΠΠΠΠ«Π₯ Π‘ΠΠ‘Π’ΠΠ
Mathematical definition of the rating system is formulated, shown its applicability to a wide class of choice situations on the basis of quantitative characteristics of the object. A study of the general properties of nonlinear, linear and stochastic rating systems, and principles of their construction is undertaken. Some of the issues of resources allocation in the rating systems are consideredΠ‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠ°-ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΉΡΠΈΠ½Π³ΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π΅Π΅ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΡΡΡ ΠΊ ΡΠΈΡΠΎΠΊΠΎΠΌΡ ΠΊΠ»Π°ΡΡΡ ΡΠΈΡΡΠ°ΡΠΈΠΉ Π²ΡΠ±ΠΎΡΠ° Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΎΠ±Ρ-Π΅ΠΊΡΠ°. ΠΡΠ΅Π΄ΠΏΡΠΈΠ½ΡΡΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
, Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
ΠΈ ΡΡΠΎΡ
Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΠΉΡΠΈΠ½Π³ΠΎΠ²ΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΠΈ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ² ΠΈΡ
ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ. Π Π°ΡΡΠΌΠΎΡΡΠ΅-Π½Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ Π²ΠΎΠΏΡΠΎΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ΅ΡΡΡΡΠΎΠ² Π² ΡΠ΅ΠΉΡΠΈΠ½Π³ΠΎΠ²ΡΡ
ΡΠΈΡΡΠ΅ΠΌΠ°
Recommended from our members
Measurements with Pinhole and Coded Aperture Gamma-Ray Imaging Systems
From a safeguards perspective, gamma-ray imaging has the potential to reduce manpower and cost for effectively locating and monitoring special nuclear material. The purpose of this project was to investigate the performance of pinhole and coded aperture gamma-ray imaging systems at Oak Ridge National Laboratory (ORNL). With the aid of the European Commission Joint Research Centre (JRC), radiometric data will be combined with scans from a three-dimensional design information verification (3D-DIV) system. Measurements were performed at the ORNL Safeguards Laboratory using sources that model holdup in radiological facilities. They showed that for situations with moderate amounts of solid or dense U sources, the coded aperture was able to predict source location and geometry within ~7% of actual values while the pinhole gave a broad representation of source distribution
Study of the Process e+ e- --> omega pi0 --> pi0 pi0 gamma in c.m. Energy Range 920--1380 MeV at CMD-2
The cross section of the process e+ e- --> omega pi0 --> pi0 pi0 gamma has
been measured in the c.m. energy range 920-1380 MeV with the CMD-2 detector.
Its energy dependence is well described by the interference of the rho(770) and
rho'(1450) mesons decaying to omega pi0. Upper limits for the cross sections of
the direct processes e+ e- --> pi0 pi0 gamma, eta pi0 gamma have been set.Comment: Accepted for publication in PL
- β¦