5 research outputs found

    Warren, McCain, and Obama Needed Fuzzy Sets at Presidential Forum

    Get PDF
    During a presidential forum in the 2008 US presidential campaign, the moderator, Pastor Rick Warren, wanted Senator John McCain and then-Senator Barack Obama to define rich with a specific number. Warren wanted to know at what specific income level a person goes from being not rich to rich. The problem with this question is that there is no specific income at which a person makes the leap from being not rich to being rich. This is because rich is a fuzzy set, not a crisp set, with different incomes having different degrees of membership in the rich fuzzy set. Fuzzy logic is needed to properly ask and answer Warren's question about quantitatively defining rich. An imprecise natural language word like rich should be considered to have qualitative definitions, crisp quantitative definitions, and fuzzy quantitative definitions

    Large language model for Bible sentiment analysis: Sermon on the Mount

    Full text link
    The revolution of natural language processing via large language models has motivated its use in multidisciplinary areas that include social sciences and humanities and more specifically, comparative religion. Sentiment analysis provides a mechanism to study the emotions expressed in text. Recently, sentiment analysis has been used to study and compare translations of the Bhagavad Gita, which is a fundamental and sacred Hindu text. In this study, we use sentiment analysis for studying selected chapters of the Bible. These chapters are known as the Sermon on the Mount. We utilize a pre-trained language model for sentiment analysis by reviewing five translations of the Sermon on the Mount, which include the King James version, the New International Version, the New Revised Standard Version, the Lamsa Version, and the Basic English Version. We provide a chapter-by-chapter and verse-by-verse comparison using sentiment and semantic analysis and review the major sentiments expressed. Our results highlight the varying sentiments across the chapters and verses. We found that the vocabulary of the respective translations is significantly different. We detected different levels of humour, optimism, and empathy in the respective chapters that were used by Jesus to deliver his message
    corecore