178 research outputs found

    Frequency conversion in nonlinear optical waveguides : from classical to quantum applications

    Get PDF
    This thesis encompasses a broad area of physics including linear and nonlinear optics, photonics and quantum physics. It combines the phenomena of nonlinearoptical frequency conversion with waveguiding and coupling, taking advantage of new opportunities presented by advances in fabrication technologies of micro- and nano-waveguides. In this dissertation an in-depth analysis of quantum and classical properties of light traveling in nonlinear optical waveguides, directional couplers and waveguide arrays is performed. The concepts of spatial and temporal dispersion, waveguiding in structures with subwavelength dimensions and nonlinear interactions between different frequencies of light are studied both theoretically and experimentally. Some sections of this thesis include development and implementation of novel physical ideas, while other sections are focused on comprehensive experimental and numerical analysis of advanced theoretical concepts. The results presented in this dissertation demonstrate new physical phenomena with potential applications in the areas of telecommunications and quantum information. The research performed in this thesis opens opportunities for frequency conversion with world-leading power efficiency, including operation with ultrashort pulses for a variety of wavelengths to suit a wide range of perspective application requirements. It also shows an approach for simple and energy efficient spatio-temporal optical signal control, which can find applications in next generation telecommunications networks. Furthermore, the results obtained in this dissertation demonstrate the possibility for flexible shaping of quantum statistics of photons generated in photonic waveguiding structures through spontaneous frequency conversion, contributing to the development of integrated quantum circuits. The new methods of frequency conversion in micro- and nano-scale waveguides and optical circuits have potential to advance the performance, energy efficiency, and security of future optical communication networks and computing systems

    Lattice topology and spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays

    Full text link
    We analyze spontaneous parametric down-conversion in various experimentally feasible 1D quadratic nonlinear waveguide arrays, with emphasis on the relationship between the lattice's topological invariants and the biphoton correlations. Nontrivial topology results in a nontrivial "winding" of the array's Bloch waves, which introduces additional selection rules for the generation of biphotons. These selection rules are in addition to, and independent of existing control using the pump beam's spatial profile and phase matching conditions. In finite lattices, nontrivial topology produces single photon edge modes, resulting in "hybrid" biphoton edge modes, with one photon localized at the edge and the other propagating into the bulk. When the single photon band gap is sufficiently large, these hybrid biphoton modes reside in a band gap of the bulk biphoton Bloch wave spectrum. Numerical simulations support our analytical results.Comment: 11 pages, 12 figure

    Effect of loss on photon-pair generation in nonlinear waveguide arrays

    Get PDF
    We describe theoretically the process of spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays in the presence of linear loss. We derive a set of discrete Schrödinger-type equations for the biphoton wave function and the wave fu

    Suppression of Spectral Diffusion by Anti-Stokes Excitation of Quantum Emitters in Hexagonal Boron Nitride

    Full text link
    Solid-state quantum emitters are garnering a lot of attention due to their role in scalable quantum photonics. A notable majority of these emitters, however, exhibit spectral diffusion due to local, fluctuating electromagnetic fields. In this work, we demonstrate efficient Anti-Stokes (AS) excitation of quantum emitters in hexagonal boron nitride (hBN), and show that the process results in the suppression of a specific mechanism responsible for spectral diffusion of the emitters. We also demonstrate an all-optical gating scheme that exploits Stokes and Anti-Stokes excitation to manipulate spectral diffusion so as to switch and lock the emission energy of the photon source. In this scheme, reversible spectral jumps are deliberately enabled by pumping the emitter with high energy (Stokes) excitation; AS excitation is then used to lock the system into a fixed state characterized by a fixed emission energy. Our results provide important insights into the photophysical properties of quantum emitters in hBN, and introduce a new strategy for controlling the emission wavelength of quantum emitters

    Classical simulation of squeezed light in optical waveguide arrays

    Get PDF
    We show that classical light diffraction in arrays of specially modulated coupled optical waveguides can simulate the quantum process of two-mode squeezing in nonlinear media, with the waveguide mode amplitudes corresponding the signal and idler photon n

    Generation of orbital-angular-momentum-entangled biphotons in triangular quadratic waveguide arrays

    Get PDF
    We suggest that closed-loop quadratic nonlinear waveguide arrays can be used as a compact interferometrically stable integrated source of discrete orbital-angular-momentum (OAM) entangled biphoton state. We describe analytically and numerically the proce
    corecore