2 research outputs found

    CRISPR-enhanced human adipocyte \u27browning\u27 as cell therapy for metabolic disease [preprint]

    Get PDF
    Obesity and type 2 diabetes (T2D) are associated with poor tissue responses to insulin [1,2], disturbances in glucose and lipid fluxes [3-5] and comorbidities including steatohepatitis [6] and cardiovascular disease [7,8]. Despite extensive efforts at prevention and treatment [9,10], diabetes afflicts over 400 million people worldwide [11]. Whole body metabolism is regulated by adipose tissue depots [12-14], which include both lipid-storing white adipocytes and less abundant \u27brown\u27 and \u27brite/beige\u27 adipocytes that express thermogenic uncoupling protein UCP1 and secrete factors favorable to metabolic health [15-18]. Application of clustered regularly interspaced short palindromic repeats (CRISPR) gene editing [19,20] to enhance \u27browning\u27 of white adipose tissue is an attractive therapeutic approach to T2D. However, the problems of cell-selective delivery, immunogenicity of CRISPR reagents and long term stability of the modified adipocytes are formidable. To overcome these issues, we developed methods that deliver complexes of SpyCas9 protein and sgRNA ex vivo to disrupt the thermogenesis suppressor gene NRIP1 [21,22] with near 100% efficiency in human or mouse adipocytes. NRIP1 gene disruption at discrete loci strongly ablated NRIP1 protein and upregulated expression of UCP1 and beneficial secreted factors, while residual Cas9 protein and sgRNA were rapidly degraded. Implantation of the CRISPR-enhanced human or mouse brown-like adipocytes into high fat diet fed mice decreased adiposity and liver triglycerides while enhancing glucose tolerance compared to mice implanted with unmodified adipocytes. These findings advance a therapeutic strategy to improve metabolic homeostasis through CRISPR-based genetic modification of human adipocytes without exposure of the recipient to immunogenic Cas9 or delivery vectors

    Mechanisms Driving Human Adipose Tissue Thermogenesis in vivo and its Clinical Applications in Metabolic Health

    No full text
    For many years, adipose tissue (AT) was thought to be a tissue primarily responsible for cushioning and insulating organs. However, significant advances in knowledge have shown that AT is necessary for maintaining an optimal metabolic balance through paracrine and endocrine mechanisms. Because AT dysfunction is related with illnesses such as obesity and diabetes, it is vital to understand the mechanisms behind these pathologies to restore metabolic health. Beige AT is a unique form of fat that generates heat through uncoupling protein 1 (UCP1), has a dense neurovascular network, and is associated with enhanced metabolic health. Hence, particular emphasis has been made on unraveling the processes behind thermogenic activation and maintenance, as increasing thermogenic activity offers considerable potential for treating metabolic disorders. Activation of beige AT is dependent on norepinephrine release from sympathetic neurons upon physiological cues such as cold exposure. Studies have revealed a major role of monoamine oxidase a (MAOA)-mediated norepinephrine clearance in the maintenance of thermogenic AT. However, major limitations are still present with regards to the mechanisms of neurotransmitter clearance and their role in thermogenic regulation. The initial objective of this thesis is to evaluate the effect of human white and thermogenic adipocytes on the formation of a neurovascular network in order to maintain thermogenesis and whether MAOA plays a direct role in thermogenic control. We demonstrate that implanted human thermogenic adipocytes generate a more vascularized and innervated AT than non-thermogenic adipocytes. Additional findings revealed that MAOA is expressed in human adipocytes and that inhibiting MAOA promotes thermogenesis. The second objective of this thesis is to determine if hAdipoGel (hAG) - a decellularized AT matrix – enhances mesenchymal stem cell (MSC) proliferation and differentiation, as well as human adipocyte engraftment in vivo. We show that MSC can proliferate in hAG and differentiate effectively into white and thermogenic adipocytes. Additionally, when white adipocytes are implanted with hAG, they differentiate into a fully functioning fat graft capable of integrating with the host. Understanding the thermogenic processes of human AT, in combination with the use of a suitable decellularized matrix, can aid in the development of therapeutic treatments that boost thermogenic activity and hence metabolic health
    corecore