3 research outputs found

    Gesundheitsfördernde Wirkung von phytogenen Substanzen

    Full text link

    Decision strategies for policy decisions under uncertainties: The case of mitigation measures addressing methane emissions from ruminants

    No full text
    Decision strategies aim at enabling reasonable decisions in cases of uncertain policy decision problems which do not meet the conditions for applying standard decision theory. This paper focuses on decision strategies that account for uncertainties by deciding whether a proposed list of policy options should be accepted or revised (scope strategies) and whether to decide now or later (timing strategies). They can be used in participatory approaches to structure the decision process. As a basis, we propose to classify the broad range of uncertainties affecting policy decision problems along two dimensions, source of uncertainty (incomplete information, inherent indeterminacy and unreliable information) and location of uncertainty (information about policy options, outcomes and values). Decision strategies encompass multiple and vague criteria to be deliberated in application. As an example, we discuss which decision strategies may account for the uncertainties related to nutritive technologies that aim at reducing methane (CH4) emissions from ruminants as a means of mitigating climate change, limiting our discussion to published scientific information. These considerations not only speak in favour of revising rather than accepting the discussed list of options, but also in favour of active postponement or semi-closure of decision-making rather than closure or passive postponement

    Phenolic plant extracts are additive in their effects against in vitro ruminal methane and ammonia formation

    Get PDF
    Objective: The methane mitigating potential of various plant-based polyphenol sources is known, but effects of combinations have been rarely tested. The aim of the present study was to determine whether binary and 3-way combinations of such phenol sources affect ruminal fermentation less, similar or more intensively than separate applications. Methods: The extracts used were from Acacia mearnsii bark (acacia), Vitis vinifera (grape) seed, Camellia sinensis leaves (green tea), Uncaria gambir leaves (gambier), Vaccinium macrocarpon berries (cranberry), Fagopyrum esculentum seed (buckwheat) and Ginkgo biloba leaves (ginkgo). All extracts were tested using the Hohenheim Gas Test. This was done alone at 5% of DM. Acacia was also combined with all other single extracts at 5% of DM each, and with two other phenol sources (all possible combinations) at 2.5+2.5% of DM. Results: Methane formation was reduced by 7 to 9% by acacia, grape seed and green tea and, in addition, by most extract combinations with acacia. Grape seed and green tea alone and in combination with acacia also reduced methane proportion of total gas to the same degree. The extracts of buckwheat and gingko were poor in phenols and promoted ruminal fermentation. All treatments except green tea alone lowered ammonia concentration by up to 23%, and the binary combinations were more effective as acacia alone. With three extracts, linear effects were found with total gas and methane formation, while with ammonia and other traits linear effects were rare. Conclusion: The study identified methane and ammonia mitigating potential of various phenolic plant extracts and showed a number of additive and some non-linear effects of combinations of extracts. Further studies, especially in live animals, should concentrate on combinations of extracts from grape seed, green tea leaves and acacia bark and determine the ideal dosages of such combinations for purpose of methane mitigation
    corecore