32 research outputs found

    Les rĂŽles distincts des isoformes de myosine II non-musculaire dans des processus cellulaires impliquant le cytosquelette d'actine

    Get PDF
    Le complexe actomyosine, formĂ© de l’association de la myosine II avec les filaments d’actine, stabilise le cytosquelette d’actine et gĂ©nĂšre la contraction cellulaire nĂ©cessaire Ă  plusieurs processus comme la motilitĂ© et l’apoptose dans les cellules non-musculaires. La myosine II est un hexamĂšre formĂ© d’une paire de chaĂźnes lourdes (MHCs) et de deux paires de chaĂźnes lĂ©gĂšres MLC20 et MLC17. La rĂ©gulation de l’activitĂ© de la myosine II, c'est-Ă -dire son interaction avec les filaments d’actine, est directement liĂ©e Ă  l’état de phosphorylation des MLC20, mais il reste beaucoup Ă  dĂ©couvrir sur l’implication des MHCs. Il existe trois isoformes de MHCs de myosine II, MHCIIA, MHCIIB et MHCIIC qui possĂšdent des fonctions Ă  la fois communes et distinctes. Notre but est de mettre en Ă©vidence les diffĂ©rences de fonction entre les isoformes de myosine II, au niveau structurale, dans la stabilisation du cytosquelette d’actine, et au niveau de leur activitĂ© contractile, dans la gĂ©nĂ©ration des forces de tension. Nous nous sommes intĂ©ressĂ©s au rĂŽle des isoformes des MHCs dans l’activitĂ© du complexe actomyosine qui est sollicitĂ© durant le processus de contraction cellulaire de l’apoptose. Dans quatre lignĂ©es cellulaires diffĂ©rentes, le traitement conjoint au TNFα et Ă  la cycloheximide causait la contraction et le rĂ©trĂ©cissement des cellules suivi de leur dĂ©tachement du support de culture. Par Western blot, nous avons confirmĂ© que la phosphorylation des MLC20 est augmentĂ©e suite au clivage de ROCK1 par la caspase-3, permettant ainsi l’interaction entre la myosine II et les filaments d’actine et par consĂ©quent, la contraction des cellules apoptotiques. Cette contraction est bloquĂ©e par l’inhibition des caspases et de ROCK1. MHCIIA est dĂ©gradĂ©e suite Ă  l’activation de la caspase-3 alors que MHCIIB n’est pas affectĂ©e. En utilisant une lignĂ©e cellulaire dĂ©ficiente en MHCIIB, ou MHCIIB (-/-), nous avons observĂ© que la contraction et le dĂ©tachement cellulaires durant l’induction de l’apoptose se produisaient moins rapidement que dans la lignĂ©e de type sauvage (Wt) ce qui suggĂšre que l’isoforme B est impliquĂ©e dans la contraction des cellules apoptotiques. ParallĂšlement, la kinase atypique PKCζ, qui phosphoryle MHCIIB et non MHCIIA, est activĂ©e durant l’apoptose. PKCζ joue un rĂŽle important puisque son inhibition bloque la contraction des cellules apoptotiques. Par la suite, nous nous sommes intĂ©ressĂ©s Ă  la modulation de la morphologie cellulaire par la myosine II. Les fibroblastes MHCIIB (-/-), prĂ©sentent un large lamellipode dont la formation semble dĂ» uniquement Ă  l’absence de l’isoforme MHCIIB, alors que les fibroblastes Wt ont une morphologie cellulaire Ă©toilĂ©e. La formation du lamellipode dans les fibroblastes MHCIIB (-/-) est caractĂ©risĂ©e par l’association de la cortactine avec la membrane plasmique. L’observation en microscopie confocale nous indique que MHCIIA interagit avec la cortactine dans les fibroblastes Wt mais trĂšs peu dans les fibroblastes MHCIIB (-/-). Le bFGF active la voie des MAP kinases dans les fibroblastes Wt et MHCIIB (-/-) et induit des extensions cellulaires aberrantes dans les fibroblastes MHCIIB (-/-). Nos rĂ©sultats montrent que l’implication de l’isoforme B de la myosine II dans la modulation de la morphologie cellulaire. L’ensemble de nos rĂ©sultats participe Ă  distinguer la fonction structurale et contractile de chacune des isoformes de myosine II dans la physiologie cellulaire.We are interested in studying the modulation of the actomyosin complex which is involved in different cellular processes such as cell locomotion and apoptosis. The actomyosin complex is formed by the association of actin filaments and myosin II. The non-muscle myosin II is a hexamer formed by one pair of heavy chains (MHCs) and two pairs of light chain (MLC20 and MLC17). The actomyosin activity is dependent on MLC20 and MHCs phosphorylation. There are three isoforms of MHCs (MHCIIA, MHCIIB and MHCIIC) which have common but also distinctive roles in several cellular processes. Our aim is to clarify the structural and contractile functions of each isoforme of myosin II in different cellular processes, in particular, cell contraction and cell morphology. First, we studied the implication of myosin II isoforms in cell shrinkage and detachment during apoptosis which are both dependent on actomyosin contractility. We treated four different cell lines with TNFα in combination with cycloheximide (CHX) to trigger apoptosis. We confirmed that TNFα induced caspase-3 activation, ROCK1 cleavage and increased MLC20 phosphorylation. We showed that TNFα/CHX induced the caspase-dependent MHCIIA degradation, whereas MHCIIB levels and association with the actin cytoskeleton remained virtually unchanged. Cell shrinkage and detachment were blocked by caspase and ROCK1 inhibitors. Using the MHCIIB (-/-) cell line, we observed that the absence of MHCIIB did not affect cell death rate. However, MHCIIB (-/-) fibroblasts showed more resistance to TNFα-induced actin disassembly, cell shrinkage and detachment than wild type (Wt) fibroblasts, indicating the participation of MHCIIB in these events. PKCζ, which only phosphorylates MHCIIB, was cleaved during apoptosis, co-immunoprecipitated preferentially with MHCIIB and, interestedly, PKCζ inhibition blocked TNFα-induced shrinkage and detachment. Our results demonstrate that MHCIIB, together with MLC phosphorylation and actin, constitute the actomyosin cytoskeleton that mediates contractility during apoptosis. Second, we studied the involvement of myosin II isoforms in cell shape modulation. Fibroblasts MHCIIB (-/-) spontaneously formed lamellipodia whereas Wt fibroblasts presented a stellate shape. Cortactin was associated with the leading edge of lamellipodia in MHCIIB (-/-) fibroblasts, but it localised diffusely in the cytoplasm or at the end of fine cellular projections in Wt fibroblasts. The levels of cortactin and cortactin phosphorylated in Tyr421 associated with membrane in MHCIIB (-/-) fibroblasts were higher than in Wt fibroblasts. Confocal microscopy showed cortactin/MHCIIA colocalization in wild type but not in MHCIIB (-/-) fibroblasts. bFGF activates Erk1/2 in wild type and MHCIIB (-/-) fibroblasts and induces the formation of aberrant membrane projections in MHCIIB (-/-) fibroblasts. In conclusion, our results contribute to characterize the structural and contractile role of each myosin II isoforms in the physiology of the cell

    Cytoskeletal Dynamics: A View from the Membrane

    Get PDF
    Many aspects of cytoskeletal assembly and dynamics can be recapitulated in vitro; yet, how the cytoskeleton integrates signals in vivo across cellular membranes is far less understood. Recent work has demonstrated that the membrane alone, or through membrane-associated proteins, can effect dynamic changes to the cytoskeleton, thereby impacting cell physiology. Having identified mechanistic links between membranes and the actin, microtubule, and septin cytoskeletons, these studies highlight the membrane’s central role in coordinating these cytoskeletal systems to carry out essential processes, such as endocytosis, spindle positioning, and cellular compartmentalization

    The actin-binding ERM protein Moesin binds to and stabilizes microtubules at the cell cortex

    Get PDF
    Ezrin, Radixin, and Moesin (ERM) proteins play important roles in many cellular processes including cell division. Recent studies have highlighted the implications of their metastatic potential in cancers. ERM’s role in these processes is largely attributed to their ability to link actin filaments to the plasma membrane. In this paper, we show that the ERM protein Moesin directly binds to microtubules in vitro and stabilizes microtubules at the cell cortex in vivo. We identified two evolutionarily conserved residues in the FERM (4.1 protein and ERM) domains of ERMs that mediated the association with microtubules. This ERM–microtubule interaction was required for regulating spindle organization in metaphase and cell shape transformation after anaphase onset but was dispensable for bridging actin filaments to the metaphase cortex. These findings provide a molecular framework for understanding the complex functional interplay between the microtubule and actin cytoskeletons mediated by ERM proteins in mitosis and have broad implications in both physiological and pathological processes that require ERMs

    A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting

    Get PDF
    Integrin activation, which is regulated by allosteric changes in receptor conformation, enables cellular responses to the chemical, mechanical and topological features of the extracellular microenvironment. A global view of how activation state converts the molecular composition of the region proximal to integrins into functional readouts is, however, lacking. Here, using conformation-specific monoclonal antibodies, we report the isolation of integrin activation state-dependent complexes and their characterization by mass spectrometry. Quantitative comparisons, integrating network, clustering, pathway and image analyses, define multiple functional protein modules enriched in a conformation-specific manner. Notably, active integrin complexes are specifically enriched for proteins associated with microtubule-based functions. Visualization of microtubules on micropatterned surfaces and live cell imaging demonstrate that active integrins establish an environment that stabilizes microtubules at the cell periphery. These data provide a resource for the interrogation of the global molecular connections that link integrin activation to adhesion signalling

    Solinet Outstanding Library Programs Award

    Full text link

    In vitro reconstitution of dynamic microtubules interacting with actin filament networks

    Full text link
    Interactions between microtubules and actin filaments (F-actin) are essential for eukaryotic cell migration, polarization, growth, and division. Although the importance of these interactions has been long recognized, the inherent complexity of the cell interior hampers a detailed mechanistic study of how these two cytoskeletal systems influence each other. In this chapter, we show how in vitro reconstitution can be employed to study how actin filaments and dynamic microtubules affect each other's organization. While we focus here on the effect of steric interactions, these assays provide an ideal starting point to develop more complex studies through the addition of known F-actin–microtubule cross-linkers, or myosin II motors

    In Vitro Reconstitution of Dynamic Microtubules Interacting with Actin Filament Networks

    Full text link
    Interactions between microtubules and actin filaments (F-actin) are essential for eukaryotic cell migration, polarization, growth, and division. Although the importance of these interactions has been long recognized, the inherent complexity of the cell interior hampers a detailed mechanistic study of how these two cytoskeletal systems influence each other. In this chapter, we show how in vitro reconstitution can be employed to study how actin filaments and dynamic microtubules affect each other's organization. While we focus here on the effect of steric interactions, these assays provide an ideal starting point to develop more complex studies through the addition of known F-actin–microtubule cross-linkers, or myosin II motors
    corecore