124 research outputs found
SACRED SOCIAL SPACES: FINDING COMMUNITY AND NEGOTIATING IDENTITY FOR AMERICAN-BORN CONVERTS TO ISLAM
This thesis examines the religious experiences of American-born converts to Islam. The social nature of religion has been long ignored in research on the lives of religious people. A review of research on Muslim identities reveals an emphasis on immigrants, women, and youth in the British context. However, there is little to no research on the unique constituency of converts to Islam and the importance of social aspects of faith for establishing a sustainable and transformative practice of Islam. This research closes this gap through a case study of the religious experiences of American-born converts to Islam.
Through in-depth interviews with converts and community leaders, and sustained engagement with the Cincinnati Muslim community, I examine the extent to which social interaction (understood as both site and process) shapes convert identities and their understanding of religious belief and practice. My research suggests that religion not only occupies a variety of everyday lived spaces for converts, but that Islam can be understood as a way of being in the world. Since understanding of religious belief and practice is multifaceted and diverse, I explore the influence of social interaction and community on converts’ spiritual modalities. I argue that spaces not deemed officially sacred (e.g. places of worship or pilgrimage sites) are just as influential in shaping the religious identities of converts, and help converts develop a religious way of being that is self-transformative and sustainable in the American context
Synthesis, X-ray structure, Hirshfeld surface analysis and antimicrobial assessment of tetranuclear s-triazine hydrazine Schiff base ligand
Funding: The Deputyship for Research and Innovation, “Ministry of Education”, King Saud University (IFKSUOR3-188-3), Saudi Arabia.The unexpected tetranuclear [Cu4(DPPT)2Cl6] complex was obtained by self-assembly of CuCl2.2H2O and (E)-2,4-di(piperidin-1-yl)-6-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)-1,3,5-triazine, ( HDPPT ) in ethanol. In this tetranuclear [Cu4(DPPT)2Cl6] complex, the organic ligand acts as mononegative chelate bridging two crystallographically independent Cu(II) sites. The DPPT− anion acts as a bidentate ligand with respect to Cu(1), while it is a tridentate for Cu(2). The Cu(1)N2Cl3 and Cu(2)N3Cl spheres have square pyramidal and square planar coordination geometries with some distortion, respectively. Two of the chloride ions coordinating the Cu(1) are bridging between two crystallographically related Cu(1) sites connecting two [Cu2(DPPT)Cl3] units together, leading to the tetranuclear formula [Cu4(DPPT)2Cl6]. The packing of the [Cu4(DPPT)2Cl6] complex is dominated by C-H…Cl contacts, leading to one-dimensional hydrogen-bond polymeric structure. According to Hirshfeld surface analysis of molecular packing, the non-covalent interactions H…H, Cl…H, Cl…C, C…H, and N…H are the most significant. Their percentages are 52.8, 19.0, 3.2, 7.7, and 9.7%, respectively. Antimicrobial assessment showed good antifungal activity of the Cu(II) complex against A. fumigatus and C. albicans compared to Ketoconazole as positive control. Moreover, the [Cu4(DPPT)2Cl6] complex has higher activity against Gram-positive bacteria than Gentamycin as positive control. The opposite was observed when testing the tetranuclear [Cu4(DPPT)2Cl6] complex against the Gram-negative bacteria.Publisher PDFPeer reviewe
Recommended from our members
Reduced Time to Admit Emergency Department Patients to Inpatient Beds Using Outflow Barrier Analysis and Process Improvement
Objective: Because admitted emergency department (ED) patients waiting for an inpatient bed contribute to dangerous ED crowding, we conducted a patient flow investigation to discover and solve outflow delays. After solution implementation, we measured whether the time admitted ED patients waited to leave the ED was reduced.
Methods: In June 2022, a team using Lean Healthcare methodologies identified flow delays and underlying barriers in a Midwest, mid-sized hospital. We calculated barriers’ magnitudes of burden by the frequency of involvement in delays. During October–December 2022, solutions targeting barriers were implemented. In October 2023, we tested whether waiting time, defined as daily median time in minutes from admission disposition to departure (ADtoD), declined by conducting independent sample, single-tailed t-test comparing pre- to post-intervention time periods, January 1–September 30, 2022 (273 days) to January 1–September 30, 2023 (273 days). Additionally, we regressed ADtoD onto pre-/post period while controlling for ED volume (total daily admissions and ED daily encounters) and hospital occupancy. A run chart analysis of monthly median ADtoD assessed improvement sustainability.
Results: Process mapping revealed that three departments (ED, environmental services [EVS], and transport services) co-produced the outflow of admitted ED patients wherein 18 delays were identified. The EVS-clinical care collaboration failures explained 61% (11/18) of delays. Technology contributed to 78% (14/18) of delays primarily because staff’s technology did not display needed information, a condition we coined “digital blindness.” Comparing pre- and post-intervention days (3,144 patients admitted pre-intervention and 3,256 patients post), the median minutes a patient waited (ADtoD) significantly decreased (96.4 to 87.1 minutes, P = 0.04), even while daily ED encounter volume significantly increased (110.7 to 117.3 encounters per day, P < 0.001). After controlling in regression for other factors associated with waiting, the intervention reduced ADtoD by 12.7 minutes per patient (standard error 5.10, P = 0.01; 95% confidence interval −22.7, −2.7). We estimate that the intervention translated to ED staff avoiding 689 hours of admitted patient boarding over nine months (ADtoD coefficient [−12.7 minutes] multiplied by post-intervention ED admissions [3,256] and divided by 60). Run chart analysis substantiated the intervention’s sustainability over nine months.
Conclusion: After systemwide patient flow investigation, solutions resolving digital blindness and environmental services-clinical care collaboration failures significantly reduced ED admitted patient boarding. 
Molecular and structural basis for Lewis glycan recognition by a cancer-targeting antibody
Immunotherapy has been successful in treating many tumour types. The development of additional tumour-antigen binding monoclonal antibodies (mAbs) will help expand the range of immunotherapeutic targets. Lewis histo-blood group and related glycans are overexpressed on many carcinomas, including those of the colon, lung, breast, prostate and ovary, and can therefore be selectively targeted by mAbs. Here we examine the molecular and structural basis for recognition of extended Lea and Lex containing glycans by a chimeric mAb. Both the murine (FG88.2) IgG3 and a chimeric (ch88.2) IgG1 mAb variants showed reactivity to colorectal cancer cells leading to significantly reduced cell viability. We determined the X-ray structure of the unliganded ch88.2 fragment antigen-binding (Fab) containing two Fabs in the unit cell. A combination of molecular docking, glycan grafting and molecular dynamics simulations predicts two distinct subsites for recognition of Lea and Lex trisaccharides. While light chain residues were exclusively used for Lea binding, recognition of Lex involved both light and heavy chain residues. An extended groove is predicted to accommodate the Lea–Lex hexasaccharide with adjoining subsites for each trisaccharide. The molecular and structural details of the ch88.2 mAb presented here provide insight into its cross-reactivity for various Lea and Lex containing glycans. Furthermore, the predicted interactions with extended epitopes likely explains the selectivity of this antibody for targeting Lewis-positive tumours
Fine-mapping, novel loci identification, and SNP association transferability in a genome-wide association study of QRS duration in African Americans
The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 × 10−14) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 × 10−4). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 × 10−8) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 × 10−9). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 × 10−7), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS–SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Observing low elevation sky and the CMB Cold Spot with BICEP3 at the South Pole
BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio
Microwave multiplexing on the Keck Array
We describe an on-sky demonstration of a microwave-multiplexing readout
system in one of the receivers of the Keck Array, a polarimetry experiment
observing the cosmic microwave background at the South Pole. During the austral
summer of 2018-2019, we replaced the time-division multiplexing readout system
with microwave-multiplexing components including superconducting microwave
resonators coupled to radio-frequency superconducting quantum interference
devices at the sub-Kelvin focal plane, coaxial-cable plumbing and amplification
between room temperature and the cold stages, and a SLAC Microresonator Radio
Frequency system for the warm electronics. In the range 5-6 GHz, a single
coaxial cable reads out 528 channels. The readout system is coupled to
transition-edge sensors, which are in turn coupled to 150-GHz slot-dipole
phased-array antennas. Observations began in April 2019, and we report here on
an initial characterization of the system performance.Comment: 9 pages, 11 figures, Accepted by the Journal of Low Temperature
Physics (Proceedings of the 18th International Workshop on Low Temperature
Detectors
Predictors of children's secondhand smoke exposure at home: a systematic review and narrative synthesis of the evidence
BACKGROUND: Children's exposure to secondhand smoke (SHS) has been causally linked to a number of childhood morbidities and mortalities. Over 50% of UK children whose parents are smokers are regularly exposed to SHS at home. No previous review has identified the factors associated with children's SHS exposure in the home.
AIM: To identify by systematic review, the factors which are associated with children's SHS exposure in the home, determined by parent or child reports and/or biochemically validated measures including cotinine, carbon monoxide or home air particulate matter.
METHODS: Electronic searches of MEDLINE, EMBASE, PsychINFO, CINAHL and Web of Knowledge to July 2014, and hand searches of reference lists from publications included in the review were conducted.
FINDINGS: Forty one studies were included in the review. Parental smoking, low socioeconomic status and being less educated were all frequently and consistently found to be independently associated with children's SHS exposure in the home. Children whose parents held more negative attitudes towards SHS were less likely to be exposed. Associations were strongest for parental cigarette smoking status; compared to children of non-smokers, those whose mothers or both parents smoked were between two and 13 times more likely to be exposed to SHS.
CONCLUSION: Multiple factors are associated with child SHS exposure in the home; the best way to reduce child SHS exposure in the home is for smoking parents to quit. If parents are unable or unwilling to stop smoking, they should instigate smoke-free homes. Interventions targeted towards the socially disadvantaged parents aiming to change attitudes to smoking in the presence of children and providing practical support to help parents smoke outside the home may be beneficial
- …