77 research outputs found

    Fast Two-Qubit Gates in Semiconductor Quantum Dots using a Photonic Microcavity

    Full text link
    Implementations for quantum computing require fast single- and multi-qubit quantum gate operations. In the case of optically controlled quantum dot qubits theoretical designs for long-range two- or multi-qubit operations satisfying all the requirements in quantum computing are not yet available. We have developed a design for a fast, long-range two-qubit gate mediated by a photonic microcavity mode using excited states of the quantum dot-cavity system that addresses these needs. This design does not require identical qubits, it is compatible with available optically induced single qubit operations, and it advances opportunities for scalable architectures. We show that the gate fidelity can exceed 90% in experimentally accessible systems

    Metastable states and macroscopic quantum tunneling in a cold atom Josephson ring

    Full text link
    We study macroscopic properties of a system of weakly interacting neutral bosons confined in a ring-shaped potential with a Josephson junction. We derive an effective low energy action for this system and evaluate its properties. In particular we find that the system possesses a set of metastable current-carrying states and evaluate the rates of transitions between these states due to macroscopic quantum tunneling. Finally we discuss signatures of different metastable states in the time-of-flight images and argue that the effect is observable within currently available experimental technique.Comment: 4 pages, 2 figure

    In Silico Transcriptomic Analysis of Wound-Healing-Associated Genes in Malignant Pleural Mesothelioma.

    Get PDF
    Background and objectives: Malignant pleural mesothelioma (MPM) is a devastating malignancy with poor prognosis. Reliable biomarkers for MPM diagnosis, monitoring, and prognosis are needed. The aim of this study was to identify genes associated with wound healing processes whose expression could serve as a prognostic factor in MPM patients. Materials and Methods: We used data mining techniques and transcriptomic analysis so as to assess the differential transcriptional expression of wound-healing-associated genes in MPM. Moreover, we investigated the potential prognostic value as well as the functional enrichments of gene ontologies relative to microRNAs (miRNAs) of the significantly differentially expressed wound-healing-related genes in MPM. Results: Out of the 82 wound-healing-associated genes analyzed, 30 were found significantly deregulated in MPM. Kaplan-Meier analysis revealed that low ITGAV gene expression could serve as a prognostic factor favoring survival of MPM patients. Finally, gene ontology annotation enrichment analysis pointed to the members of the hsa-miR-143, hsa-miR-223, and the hsa-miR-29 miRNA family members as important regulators of the deregulated wound healing genes. Conclusions: 30 wound-healing-related genes were significantly deregulated in MPM, which are potential targets of hsa-miR-143, hsa-miR-223, and the hsa-miR-29 miRNA family members. Out of those genes, ITGAV gene expression was a prognostic factor of overall survival in MPM. Our results highlight the role of impaired tissue repair in MPM development and should be further validated experimentally

    STUDY OF THE EFFECT OF HYPOTHERMIC CONSERVATION ON THE INTRACELLULAR SODIUM CONCENTRATION IN THE ENDOTHELIUM OF CORNEAL TRANSPLANTS

    Get PDF
    Endothelial keratoplasty has become the treatment of choice for corneal endothelial dysfunction. Advancements in the surgical treatment of corneal endothelial diseases depend on progress in graft conservation and its related advantages in assessing the suitability of grafts for transplantation. Transport of water and ions by cornea endothelium is important for the optic properties of cornea. In this work, we study the intracellular sodium concentration in cornea endothelial cells in samples of pig cornea that underwent hypothermic conservation for 1 and 10 days and endothelial cells of human cornea grafts after 10-day conservation. The concentration of intracellular sodium in preparations of endothelial cells was assayed using fluorescent dye SodiumGreen. The fluorescent images were analyzed with the custom-made computer program CytoDynamics. An increased level of intracellular sodium was shown in the endothelium after 10-day conservation in comparison with one-day conservation (pig samples). Sodium permeability of pig endothelial cell plasma membranes significantly decreased in these samples. Assessment of intracellular sodium in human cornea endothelium showed a higher level – as was in analogues pig samples of the corneal endothelium. The assay of the intracellular sodium balance concentration established in endothelial cells after hypothermic conservation in mediums L-15 and Optisol-GS showed a significant advantage of specialized me dium Optisol-GS. The balanced intracellular concentration after 10 days of hypothermic conservation was significantly lower in cells incubated at 4 °C in Optisol-GS (L-15, 128 ± 14,  n = 15; Optisol-GS, 108 ± 14, n = 11; mM, p < 0.001). Intracellular sodium concentration could be a useful parameter for assessing cornea endothelium cell viability

    Quantitative Treatment of Decoherence

    Full text link
    We outline different approaches to define and quantify decoherence. We argue that a measure based on a properly defined norm of deviation of the density matrix is appropriate for quantifying decoherence in quantum registers. For a semiconductor double quantum dot qubit, evaluation of this measure is reviewed. For a general class of decoherence processes, including those occurring in semiconductor qubits, we argue that this measure is additive: It scales linearly with the number of qubits.Comment: Revised version, 26 pages, in LaTeX, 3 EPS figure

    On the Puzzle of Odd-Frequency Superconductivity

    Full text link
    Since the first theoretical proposal by Berezinskii, an odd-frequency superconductivity has encountered the fundamental problems on its thermodynamic stability and rigidity of a homogenous state accompanied by unphysical Meissner effect. Recently, Solenov {\it et al}. [Phys. Rev. B {\bf 79} (2009) 132502.] have asserted that the path-integral formulation gets rid of the difficulties leading to a stable homogenous phase with an ordinary Meissner effect. Here, we show that it is crucial to choose the appropriate saddle-point solution that minimizes the effective free energy, which was assumed {\it implicitly} in the work by Solenov and co-workers. We exhibit the path-integral framework for the odd-frequency superconductivity with general type of pairings, including an argument on the retarded functions via the analytic continuation to the real axis.Comment: 6 pages, in JPSJ forma

    Quantum Nucleation and Macroscopic Quantum Tunneling in Cold-Atom Boson-Fermion Mixtures

    Full text link
    Kinetics of phase separation transition in boson-fermion cold atom mixtures is investigated. We identify the parameters at which the transition is governed by quantum nucleation mechanism, responsible for the formation of critical nuclei of a stable phase. We demonstrate that for low fermion-boson mass ratio the density dependence of quantum nucleation transition rate is experimentally observable. The crossover to macroscopic quantum tunneling regime is analyzed. Based on a microscopic description of interacting cold atom boson-fermion mixtures we derive an effective action for the critical droplet and obtain an asymptotic expression for the nucleation rate in the vicinity of the phase transition and near the spinodal instability of the mixed phase. We show that dissipation due to excitations in fermion subsystem play a dominant role close to the transition point.Comment: 13 pages, 5 figure
    corecore